Advertisement

From Literature to Knowledge: Exploiting PubMed to Answer Biomedical Questions in Natural Language

  • Pinaki Bhaskar
  • Marina Buzzi
  • Filippo GeraciEmail author
  • Marco Pellegrini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9267)

Abstract

Researchers, practitioners and the general public strive to be constantly up to date with the latest developments in the subjects of bio-medical research of their interest. Meanwhile the collection of high quality research papers freely available on the Web has increase dramatically in the last few years and this trend is likely to continue. This state of facts brings about opportunities as well as challenges for the construction of effective web-based searching tools. Question/Answering systems based on user interactions in Natural Language have emerged as a promising alternative to traditional keyword based search engines. However this technology still needs to mature in order to fulfill its promises. In this paper we present and test a new graph-based proof-of-concept paradigm for processing the knowledge base and the user queries expressed in natural Language. The user query is mapped as a subgraph matching problem onto the internal graph representation, and thus can handle efficiently also partial matches. Preliminary user-based output quality measurements confirm the viability of our method.

Keywords

Clinical Decision Support System Question Answering Screen Reader Tandem Repeat Sequence Mean Reciprocal Rank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge the support of the Italian Registry of ccTLD “.it” and the ERCIM ‘Alain Bensoussan’ Fellowship Programme.

References

  1. 1.
    Allam, A., Schulz, P., Nakamoto, K.: The impact of search engine selection and sorting criteria on vaccination beliefs and attitudes: two experiments manipulating google output. J. Med. Internet Res. 16(4), e100 (2014)CrossRefGoogle Scholar
  2. 2.
    Athenikos, S.J., Han, H.: Biomedical question answering: a survey. Comput. Meth. Prog. biomed. 99(1), 1–24 (2010)CrossRefGoogle Scholar
  3. 3.
    Bauer, M., Berleant, D.: Usability survey of biomedical question answering systems. Hum. Genomics 6(1), 17 (2012)CrossRefGoogle Scholar
  4. 4.
    Bleik, S., Mishra, M., Huan, J., Song, M.: Text categorization of biomedical data sets using graph kernels and a controlled vocabulary. IEEE/ACM Trans. Comput. Biol. Bioinf. 10(5), 1211–1217 (2013)CrossRefGoogle Scholar
  5. 5.
    Can, A.B., Baykal, N.: Medicoport: a medical search engine for all. Comput. Meth. Programs Biomed. 86(1), 73–86 (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cao, Y., Liu, F., Simpson, P., Antieau, L., Bennett, A., Cimino, J.J., Ely, J., Yu, H.: Askhermes: an online question answering system for complex clinical questions. J. Biomed. Inf. 44(2), 277–288 (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Celi, L.A., Zimolzak, A.J., Stone, D.J.: Dynamic clinical data mining: search engine-based decision support. JMIR Med. Inf. 2(1), e13 (2014)CrossRefGoogle Scholar
  8. 8.
    Cohen, A.M., Hersh, W.R.: A survey of current work in biomedical text mining. Briefings Bioinf. 6(1), 57–71 (2005)CrossRefGoogle Scholar
  9. 9.
    Cruchet, S., Gaudinat, A., Boyer, C.: Supervised approach to recognize question type in a QA system for health. Stud. Health Technol. Inf. 136, 407–412 (2008)Google Scholar
  10. 10.
    Gobeill, J., Patsche, E., Theodoro, D., Veuthey, A.L., Lovis, C., Ruch, P.: Question answering for biology and medicine. In: 9th International Conference on Information Technology and Applications in Biomedicine, 2009. ITAB 2009, pp. 1–5, November 2009Google Scholar
  11. 11.
    Gori, M., Maggini, M., Sarti, L.: Exact and approximate graph matching using random walks. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1100–1111 (2005)CrossRefGoogle Scholar
  12. 12.
    Güting, R.H.: GraphDB: modeling and querying graphs in databases. In: VLDB, vol. 94, pp. 12–15. Citeseer (1994)Google Scholar
  13. 13.
    Hristovski, D., Dinevski, D., Kastrin, A., Rindflesch, T.C.: Biomedical question answering using semantic relations. BMC Bioinf. 16(1), 16 (2015)CrossRefGoogle Scholar
  14. 14.
    Kaplan, I.L., Abdulla, G.M., Brugger, S.T., Kohn, S.R.: Implementing graph pattern queries on a relational database. Technical report, Lammerce Livermore National Laboratory (2008)Google Scholar
  15. 15.
    Kipper, K., Korhonen, A., Ryant, N., Palmer, M.: Extending verbnet with novel verb classes. In: Proceedings of LREC, vol. 2006, p. 1. Citeseer (2006)Google Scholar
  16. 16.
    Kolomiyets, O., Moens, M.F.: A survey on question answering technology from an information retrieval perspective. Inf. Sci. 181(24), 5412–5434 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Luo, G., Tang, C., Yang, H., Wei, X.: Medsearch: a specialized search engine for medical information retrieval. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 143–152. ACM (2008)Google Scholar
  18. 18.
    Nielsen, J.: Designing Web Usability: The Practice of Simplicity. New Riders Publishing, Thousand Oaks (1999)Google Scholar
  19. 19.
    Peñas, A., Forner, P., Sutcliffe, R., Rodrigo, Á., Forăscu, C., Alegria, I., Giampiccolo, D., Moreau, N., Osenova, P.: Overview of respubliQA 2009: question answering evaluation over european legislation. In: Peters, C., Di Nunzio, G.M., Kurimo, M., Mandl, T., Mostefa, D., Peñas, A., Roda, G. (eds.) CLEF 2009. LNCS, vol. 6241, pp. 174–196. Springer, Heidelberg (2010) Google Scholar
  20. 20.
    Regev, Y., Finkelstein-Landau, M., Feldman, R., Gorodetsky, M., Zheng, X., Levy, S., Charlab, R., Lawrence, C., Lippert, R.A., Zhang, Q., Shatkay, H.: Rule-based extraction of experimental evidence in the biomedical domain: the KDD cup 2002 (task 1). SIGKDD Explor. Newsl. 4(2), 90–92 (2002)CrossRefGoogle Scholar
  21. 21.
    Sackett, D.L., Rosenberg, W.M.C., Gray, J.A.M., Haynes, R.B., Richardson, W.S.: Evidence based medicine: what it is and what it isn’t. BMJ 312(7023), 71–72 (1996)CrossRefGoogle Scholar
  22. 22.
    Simpson, M.S., Demner-Fushman, D.: Biomedical text mining: a survey of recent progress. In: Aggarwal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 465–517. Springer, New York (2012)CrossRefGoogle Scholar
  23. 23.
    Soldaini, L., Cohan, A., Yates, A., Goharian, N., Frieder, O.: Retrieving medical literature for clinical decision support. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 538–549. Springer, Heidelberg (2015) Google Scholar
  24. 24.
    Voorhees, E.M., Tice, D.M.: Building a question answering test collection. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2000, pp. 200–207. ACM, New York (2000)Google Scholar
  25. 25.
    Voorhees, E.M., et al.: The TREC-8 question answering track report. In: TREC. vol. 99, pp. 77–82 (1999)Google Scholar
  26. 26.
    Wang, L., Wang, J., Wang, M., Li, Y., Liang, Y., Xu, D.: Using internet search engines to obtain medical information: a comparative study. J. Med. Internet Res. 14(3), e74 (2012)CrossRefGoogle Scholar
  27. 27.
    Zweigenbaum, P., Demner-Fushman, D., Yu, H., Cohen, K.B.: Frontiers of biomedical text mining: current progress. Briefings in Bioinf. 8(5), 358–375 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Pinaki Bhaskar
    • 1
  • Marina Buzzi
    • 1
  • Filippo Geraci
    • 1
    Email author
  • Marco Pellegrini
    • 1
  1. 1.CNRInstitute for Informatics and TelematicsPisaItaly

Personalised recommendations