Skip to main content

Endoplasmic Reticulum Stress and the Protein Overload Response in the Serpinopathies

  • Chapter

Abstract

The endoplasmic reticulum (ER) is an essential compartment for the synthesis and maturation of transmembrane and secretory proteins. Perturbations of protein folding by environmental or genetic factors result in the accumulation of misfolded proteins within the lumen of the ER. This leads to ER stress, a state defined as an imbalance between the rate of secretory protein synthesis and the capacity of the ER to fold new client proteins. The unfolded protein response (UPR) and the ER overload response (EOR) are two stress-induced signalling pathways emanating from the ER during the accumulation of either misfolded or well-folded client proteins, respectively. The serpins are unique as a class of proteins, since naturally occurring mutations appear to cause disease by triggering either the UPR or the EOR depending upon the specific nature of the mutation, such that different mutants of the same protein can preferentially trigger one or other response. Here, we discuss these signalling responses and how study of the serpinopathies has shed light on this area of cell biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aulak KS, Eldering E, Hack CE, Lubbers YP, Harrison RA, Mast A, Cicardi M, Davis AE III (1993) A hinge region mutation in C1-inhibitor (Ala436→Thr) results in nonsubstrate-like behavior and in polymerization of the molecule. J Biol Chem 268(24):18088–18094

    CAS  PubMed  Google Scholar 

  • Bergin DA, Reeves EP, Meleady P, Henry M, McElvaney OJ, Carroll TP, Condron C, Chotirmall SH, Clynes M, O’Neill SJ, McElvaney NG (2010) alpha-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J Clin Invest 120(12):4236–4250. doi:10.1172/JCI41196

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4(12), e423. doi:10.1371/journal.pbio.0040423

    PubMed Central  PubMed  Google Scholar 

  • Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–332. doi:10.1038/35014014

    CAS  PubMed  Google Scholar 

  • Biswas DK, Shi Q, Baily S, Strickland I, Ghosh S, Pardee AB, Iglehart JD (2004) NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci U S A 101(27):10137–10142. doi:10.1073/pnas.0403621101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blond-Elguindi S, Fourie AM, Sambrook JF, Gething MJ (1993) Peptide-dependent stimulation of the ATPase activity of the molecular chaperone BiP is the result of conversion of oligomers to active monomers. J Biol Chem 268(17):12730–12735

    CAS  PubMed  Google Scholar 

  • Brodbeck RM, Brown JL (1992) Secretion of alpha-1-proteinase inhibitor requires an almost full length molecule. J Biol Chem 267(1):294–297

    CAS  PubMed  Google Scholar 

  • Brodsky JL, Wojcikiewicz RJ (2009) Substrate-specific mediators of ER associated degradation (ERAD). Curr Opin Cell Biol 21(4):516–521. doi:10.1016/j.ceb.2009.04.006

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bruce D, Perry DJ, Borg JY, Carrell RW, Wardell MR (1994) Thromboembolic disease due to thermolabile conformational changes of antithrombin Rouen-VI (187 Asn→Asp). J Clin Invest 94(6):2265–2274. doi:10.1172/JCI117589

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cabral CM, Choudhury P, Liu Y, Sifers RN (2000) Processing by endoplasmic reticulum mannosidases partitions a secretion-impaired glycoprotein into distinct disposal pathways. J Biol Chem 275(32):25015–25022. doi:10.1074/jbc.M910172199

    CAS  PubMed  Google Scholar 

  • Cabral CM, Liu Y, Sifers RN (2001) Dissecting glycoprotein quality control in the secretory pathway. Trends Biochem Sci 26(10):619–624

    CAS  PubMed  Google Scholar 

  • Cabral CM, Liu Y, Moremen KW, Sifers RN (2002) Organizational diversity among distinct glycoprotein endoplasmic reticulum-associated degradation programs. Mol Biol Cell 13(8):2639–2650. doi:10.1091/mbc.E02-02-0068

    PubMed Central  CAS  PubMed  Google Scholar 

  • Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415(6867):92–96. doi:10.1038/415092a

    CAS  PubMed  Google Scholar 

  • Carlson JA, Rogers BB, Sifers RN, Finegold MJ, Clift SM, DeMayo FJ, Bullock DW, Woo SL (1989) Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice. J Clin Invest 83(4):1183–1190. doi:10.1172/JCI113999

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carroll TP, Greene CM, O’Connor CA, Nolan AM, O’Neill SJ, McElvaney NG (2010) Evidence for unfolded protein response activation in monocytes from individuals with alpha-1 antitrypsin deficiency. J Immunol 184(8):4538–4546. doi:10.4049/jimmunol.0802864, jimmunol.0802864 [pii]

    CAS  PubMed  Google Scholar 

  • Chambers JE, Marciniak SJ (2014) Protein misfolding and ER stress. Am J Physiol Cell Physiol 307(8):C657–70. doi:10.1152/ajpcell.00183.2014

    CAS  PubMed  Google Scholar 

  • Chambers JE, Petrova K, Tomba G, Vendruscolo M, Ron D (2012) ADP ribosylation adapts an ER chaperone response to short-term fluctuations in unfolded protein load. J Cell Biol 198(3):371–385. doi:10.1083/jcb.201202005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chappell S, Guetta-Baranes T, Hadzic N, Stockley R, Kalsheker N (2009) Polymorphism in the endoplasmic reticulum mannosidase I (MAN1B1) gene is not associated with liver disease in individuals homozygous for the Z variant of the alpha1-antitrypsin protease inhibitor (PiZZ individuals). Hepatology 50(4):1315. doi:10.1002/hep.23170, author reply 1315–1316

    PubMed  Google Scholar 

  • Chen X, Shen J, Prywes R (2002) The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the golgi. J Biol Chem 277(15):13045–13052

    CAS  PubMed  Google Scholar 

  • Chen B, Mariano J, Tsai YC, Chan AH, Cohen M, Weissman AM (2006) The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc Natl Acad Sci U S A 103(2):341–346. doi:10.1073/pnas.0506618103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Christianson JC, Shaler TA, Tyler RE, Kopito RR (2008) OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol 10(3):272–282. doi:10.1038/ncb1689

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coutelier M, Andries S, Ghariani S, Dan B, Duyckaerts C, van Rijckevorsel K, Raftopoulos C, Deconinck N, Sonderegger P, Scaravilli F, Vikkula M, Godfraind C (2008) Neuroserpin mutation causes electrical status epilepticus of slow-wave sleep. Neurology 71(1):64–66. doi:10.1212/01.wnl.0000316306.08751.28

    CAS  PubMed  Google Scholar 

  • Cox JS, Shamu CE, Walter P (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73(6):1197–1206

    CAS  PubMed  Google Scholar 

  • Credle JJ, Finer-Moore JS, Papa FR, Stroud RM, Walter P (2005) On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc Natl Acad Sci U S A 102(52):18773–18784. doi:10.1073/pnas.0509487102, 0509487102 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I, Kepp O, Tasdemir E, Galluzzi L, Shen S, Tailler M, Delahaye N, Tesniere A, De Stefano D, Younes AB, Harper F, Pierron G, Lavandero S, Zitvogel L, Israel A, Baud V, Kroemer G (2010) The IKK complex contributes to the induction of autophagy. EMBO J 29(3):619–631. doi:10.1038/emboj.2009.364

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davies MJ, Miranda E, Roussel BD, Kaufman RJ, Marciniak SJ, Lomas DA (2009) Neuroserpin polymers activate NF-kappaB by a calcium signaling pathway that is independent of the unfolded protein response. J Biol Chem 284(27):18202–18209. doi:10.1074/jbc.M109.010744

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davis RL, Shrimpton AE, Holohan PD, Bradshaw C, Feiglin D, Collins GH, Sonderegger P, Kinter J, Becker LM, Lacbawan F, Krasnewich D, Muenke M, Lawrence DA, Yerby MS, Shaw CM, Gooptu B, Elliott PR, Finch JT, Carrell RW, Lomas DA (1999) Familial dementia caused by polymerization of mutant neuroserpin. Nature 401(6751):376–379. doi:10.1038/43894

    CAS  PubMed  Google Scholar 

  • Davis RL, Shrimpton AE, Carrell RW, Lomas DA, Gerhard L, Baumann B, Lawrence DA, Yepes M, Kim TS, Ghetti B, Piccardo P, Takao M, Lacbawan F, Muenke M, Sifers RN, Bradshaw CB, Kent PF, Collins GH, Larocca D, Holohan PD (2002) Association between conformational mutations in neuroserpin and onset and severity of dementia. Lancet 359(9325):2242–2247. doi:10.1016/S0140-6736(02)09293-0

    CAS  PubMed  Google Scholar 

  • de Serres F, Blanco I (2014) Role of alpha-1 antitrypsin in human health and disease. J Intern Med 276(4):311–335. doi:10.1111/joim.12239

    PubMed  Google Scholar 

  • Dorner AJ, Wasley LC, Kaufman RJ (1992) Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J 11(4):1563–1571

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dycaico MJ, Grant SG, Felts K, Nichols WS, Geller SA, Hager JH, Pollard AJ, Kohler SW, Short HP, Jirik FR et al (1988) Neonatal hepatitis induced by alpha 1-antitrypsin: a transgenic mouse model. Science 242(4884):1409–1412

    CAS  PubMed  Google Scholar 

  • Ekeowa UI, Freeke J, Miranda E, Gooptu B, Bush MF, Perez J, Teckman J, Robinson CV, Lomas DA (2010) Defining the mechanism of polymerization in the serpinopathies. Proc Natl Acad Sci USA 107(40):17146–17151. doi:10.1073/pnas.1004785107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eldering E, Verpy E, Roem D, Meo T, Tosi M (1995) COOH-terminal substitutions in the serpin C1 inhibitor that cause loop overinsertion and subsequent multimerization. J Biol Chem 270(6):2579–2587

    CAS  PubMed  Google Scholar 

  • Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4(3):181–191

    CAS  PubMed  Google Scholar 

  • Elliott PR, Bilton D, Lomas DA (1998) Lung polymers in Z alpha1-antitrypsin deficiency-related emphysema. Am J Respir Cell Mol Biol 18(5):670–674. doi:10.1165/ajrcmb.18.5.3065

    CAS  PubMed  Google Scholar 

  • Eriksson S (1965) Studies in alpha 1-antitrypsin deficiency. Acta Med Scand Suppl 432:1–85

    CAS  PubMed  Google Scholar 

  • Eriksson S, Carlson J, Velez R (1986) Risk of cirrhosis and primary liver cancer in alpha 1-antitrypsin deficiency. N Engl J Med 314(12):736–739. doi:10.1056/NEJM198603203141202

    CAS  PubMed  Google Scholar 

  • Faber JP, Poller W, Olek K, Baumann U, Carlson J, Lindmark B, Eriksson S (1993) The molecular basis of alpha 1-antichymotrypsin deficiency in a heterozygote with liver and lung disease. J Hepatol 18(3):313–321

    CAS  PubMed  Google Scholar 

  • Faber JP, Poller W, Weidinger S, Kirchgesser M, Schwaab R, Bidlingmaier F, Olek K (1994) Identification and DNA sequence analysis of 15 new alpha 1-antitrypsin variants, including two PI*Q0 alleles and one deficient PI*M allele. Am J Hum Genet 55(6):1113–1121

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fagioli C, Sitia R (2001) Glycoprotein quality control in the endoplasmic reticulum. Mannose trimming by endoplasmic reticulum mannosidase I times the proteasomal degradation of unassembled immunoglobulin subunits. J Biol Chem 276(16):12885–12892. doi:10.1074/jbc.M009603200

    CAS  PubMed  Google Scholar 

  • Fewell SW, Travers KJ, Weissman JS, Brodsky JL (2001) The action of molecular chaperones in the early secretory pathway. Annu Rev Genet 35:149–191

    CAS  PubMed  Google Scholar 

  • Flynn GC, Pohl J, Flocco MT, Rothman JE (1991) Peptide-binding specificity of the molecular chaperone BIP. Nature 353(6346):726–730. doi:10.1038/353726a0

    CAS  PubMed  Google Scholar 

  • Gardner BM, Walter P (2011) Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333(6051):1891–1894. doi:10.1126/science.1209126

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gething MJ, McCammon K, Sambrook J (1986) Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell 46(6):939–950

    CAS  PubMed  Google Scholar 

  • Graham KS, Le A, Sifers RN (1990) Accumulation of the insoluble PiZ variant of human alpha 1-antitrypsin within the hepatic endoplasmic reticulum does not elevate the steady-state level of grp78/BiP. J Biol Chem 265(33):20463–20468

    CAS  PubMed  Google Scholar 

  • Granell S, Baldini G, Mohammad S, Nicolin V, Narducci P, Storrie B, Baldini G (2008) Sequestration of mutated alpha1-antitrypsin into inclusion bodies is a cell-protective mechanism to maintain endoplasmic reticulum function. Mol Biol Cell 19(2):572–586. doi:10.1091/mbc.E07-06-0587

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274. doi:10.1038/16729

    CAS  PubMed  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6(5):1099–1108

    CAS  PubMed  Google Scholar 

  • Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10(11):3787–3799

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hebert DN, Foellmer B, Helenius A (1995) Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81(3):425–433

    CAS  PubMed  Google Scholar 

  • Hidvegi T, Schmidt BZ, Hale P, Perlmutter DH (2005) Accumulation of mutant alpha1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFkappaB, and BAP31 but not the unfolded protein response. J Biol Chem 280(47):39002–39015. doi:10.1074/jbc.M508652200, M508652200 [pii]

    CAS  PubMed  Google Scholar 

  • Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, Kemp C, Maurice N, Mukherjee A, Goldbach C, Watkins S, Michalopoulos G, Perlmutter DH (2010) An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 329(5988):229–232. doi:10.1126/science.1190354, science.1190354 [pii]

    CAS  PubMed  Google Scholar 

  • Hidvegi T, Mukherjee A, Ewing M, Kemp C, Perlmutter DH (2011) The role of autophagy in alpha-1-antitrypsin deficiency. Methods Enzymol 499:33–54. doi:10.1016/B978-0-12-386471-0.00003-1

    CAS  PubMed  Google Scholar 

  • Hiller MM, Finger A, Schweiger M, Wolf DH (1996) ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273(5282):1725–1728

    CAS  PubMed  Google Scholar 

  • Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS (2009) Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 186(3):323–331. doi:10.1083/jcb.200903014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hosokawa N, Tremblay LO, You Z, Herscovics A, Wada I, Nagata K (2003) Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong alpha1-antitrypsin by human ER mannosidase I. J Biol Chem 278(28):26287–26294

    CAS  PubMed  Google Scholar 

  • Hosokawa N, Wada I, Natsuka Y, Nagata K (2006) EDEM accelerates ERAD by preventing aberrant dimer formation of misfolded alpha1-antitrypsin. Genes Cells 11(5):465–476. doi:10.1111/j.1365-2443.2006.00957.x

    CAS  PubMed  Google Scholar 

  • Hosokawa N, Tremblay LO, Sleno B, Kamiya Y, Wada I, Nagata K, Kato K, Herscovics A (2010) EDEM1 accelerates the trimming of alpha1,2-linked mannose on the C branch of N-glycans. Glycobiology 20(5):567–575. doi:10.1093/glycob/cwq001

    CAS  PubMed  Google Scholar 

  • Iannotti MJ, Figard L, Sokac AM, Sifers RN (2014) A Golgi-localized mannosidase (MAN1B1) plays a non-enzymatic gatekeeper role in protein biosynthetic quality control. J Biol Chem 289(17):11844–11858. doi:10.1074/jbc.M114.552091

    PubMed Central  CAS  PubMed  Google Scholar 

  • Irving JA, Ekeowa UI, Belorgey D, Haq I, Gooptu B, Miranda E, Perez J, Roussel BD, Ordonez A, Dalton LE, Thomas SE, Marciniak SJ, Parfrey H, Chilvers ER, Teckman JH, Alam S, Mahadeva R, Rashid ST, Vallier L, Lomas DA (2011) The serpinopathies studying serpin polymerization in vivo. Methods Enzymol 501:421–466. doi:10.1016/B978-0-12-385950-1.00018-3

    CAS  PubMed  Google Scholar 

  • Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, Wek RC (2003) Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 23(16):5651–5663

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kamimoto T, Shoji S, Hidvegi T, Mizushima N, Umebayashi K, Perlmutter DH, Yoshimori T (2006) Intracellular inclusions containing mutant alpha1-antitrypsin Z are propagated in the absence of autophagic activity. J Biol Chem 281(7):4467–4476. doi:10.1074/jbc.M509409200, M509409200 [pii]

    CAS  PubMed  Google Scholar 

  • Kegel KB, Kim M, Sapp E, McIntyre C, Castano JG, Aronin N, DiFiglia M (2000) Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci 20(19):7268–7278

    CAS  PubMed  Google Scholar 

  • Kimata Y, Oikawa D, Shimizu Y, Ishiwata-Kimata Y, Kohno K (2004) A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J Cell Biol 167(3):445–456. doi:10.1083/jcb.200405153

    PubMed Central  CAS  PubMed  Google Scholar 

  • Knorre A, Wagner M, Schaefer HE, Colledge WH, Pahl HL (2002) DeltaF508-CFTR causes constitutive NF-kappaB activation through an ER-overload response in cystic fibrosis lungs. Biol Chem 383(2):271–282. doi:10.1515/BC.2002.029

    CAS  PubMed  Google Scholar 

  • Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332(6163):462–464. doi:10.1038/332462a0

    CAS  PubMed  Google Scholar 

  • Kroeger H, Miranda E, MacLeod I, Perez J, Crowther DC, Marciniak SJ, Lomas DA (2009) Endoplasmic reticulum-associated degradation (ERAD) and autophagy cooperate to degrade polymerogenic mutant serpins. J Biol Chem 284(34):22793–22802. doi:10.1074/jbc.M109.027102, M109.027102 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kruse KB, Brodsky JL, McCracken AA (2006) Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: one for soluble Z variant of human alpha-1 proteinase inhibitor (A1PiZ) and another for aggregates of A1PiZ. Mol Biol Cell 17(1):203–212. doi:10.1091/mbc.E04-09-0779, E04-09-0779 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lawless MW, Greene CM, Mulgrew A, Taggart CC, O’Neill SJ, McElvaney NG (2004) Activation of endoplasmic reticulum-specific stress responses associated with the conformational disease Z alpha 1-antitrypsin deficiency. J Immunol 172(9):5722–5726

    CAS  PubMed  Google Scholar 

  • Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651. doi:10.1101/cshperspect.a001651

    PubMed Central  PubMed  Google Scholar 

  • Le A, Graham KS, Sifers RN (1990) Intracellular degradation of the transport-impaired human PiZ alpha 1-antitrypsin variant. Biochemical mapping of the degradative event among compartments of the secretory pathway. J Biol Chem 265(23):14001–14007

    CAS  PubMed  Google Scholar 

  • Le A, Ferrell GA, Dishon DS, Le QQ, Sifers RN (1992) Soluble aggregates of the human PiZ alpha 1-antitrypsin variant are degraded within the endoplasmic reticulum by a mechanism sensitive to inhibitors of protein synthesis. J Biol Chem 267(2):1072–1080

    CAS  PubMed  Google Scholar 

  • Lievremont JP, Rizzuto R, Hendershot L, Meldolesi J (1997) BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J Biol Chem 272(49):30873–30879

    CAS  PubMed  Google Scholar 

  • Liu Y, Choudhury P, Cabral CM, Sifers RN (1997) Intracellular disposal of incompletely folded human alpha1-antitrypsin involves release from calnexin and post-translational trimming of asparagine-linked oligosaccharides. J Biol Chem 272(12):7946–7951

    CAS  PubMed  Google Scholar 

  • Liu Y, Choudhury P, Cabral CM, Sifers RN (1999) Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J Biol Chem 274(9):5861–5867

    CAS  PubMed  Google Scholar 

  • Lomas DA, Mahadeva R (2002) Alpha1-antitrypsin polymerization and the serpinopathies: pathobiology and prospects for therapy. J Clin Invest 110(11):1585–1590

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lomas DA, Evans DL, Finch JT, Carrell RW (1992) The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 357(6379):605–607

    CAS  PubMed  Google Scholar 

  • Lu M, Lawrence DA, Marsters S, Acosta-Alvear D, Kimmig P, Mendez AS, Paton AW, Paton JC, Walter P, Ashkenazi A (2014a) Cell death. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science 345(6192):98–101. doi:10.1126/science.1254312

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu Y, Liang FX, Wang X (2014b) A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB. Mol Cell 55(5):758–770. doi:10.1016/j.molcel.2014.06.032

    PubMed Central  PubMed  Google Scholar 

  • Marciniak SJ, Lomas DA (2010) Alpha1-Antitrypsin Deficiency and Autophagy. N Engl J Med 363(19):1863–1864

    CAS  PubMed  Google Scholar 

  • Marciniak SJ, Ron D (2006) Endoplasmic reticulum stress signaling in disease. Physiol Rev 86(4):1133–1149. doi:10.1152/physrev.00015.2006

    CAS  PubMed  Google Scholar 

  • Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18(24):3066–3077. doi:10.1101/gad.1250704

    PubMed Central  CAS  PubMed  Google Scholar 

  • McCracken AA, Brodsky JL (1996) Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol 132(3):291–298

    CAS  PubMed  Google Scholar 

  • Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7(8):766–772

    CAS  PubMed  Google Scholar 

  • Miranda E, MacLeod I, Davies MJ, Perez J, Romisch K, Crowther DC, Lomas DA (2008) The intracellular accumulation of polymeric neuroserpin explains the severity of the dementia FENIB. Hum Mol Genet 17(11):1527–1539. doi:10.1093/hmg/ddn041, ddn041 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miranda E, Perez J, Ekeowa UI, Hadzic N, Kalsheker N, Gooptu B, Portmann B, Belorgey D, Hill M, Chambers S, Teckman J, Alexander GJ, Marciniak SJ, Lomas DA (2010) A novel monoclonal antibody to characterize pathogenic polymers in liver disease associated with alpha1-antitrypsin deficiency. Hepatology 52(3):1078–1088. doi:10.1002/hep.23760

    CAS  PubMed  Google Scholar 

  • Molinari M, Calanca V, Galli C, Lucca P, Paganetti P (2003) Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299(5611):1397–1400

    CAS  PubMed  Google Scholar 

  • Muensch H, Gaidulis L, Kueppers F, So SY, Escano G, Kidd VJ, Woo SL (1986) Complete absence of serum alpha-1-antitrypsin in conjunction with an apparently normal gene structure. Am J Hum Genet 38(6):898–907

    PubMed Central  CAS  PubMed  Google Scholar 

  • Novoa I, Zeng H, Harding HP, Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153(5):1011–1022

    PubMed Central  CAS  PubMed  Google Scholar 

  • Novoa I, Zhang Y, Zeng H, Jungreis R, Harding HP, Ron D (2003) Stress-induced gene expression requires programmed recovery from translational repression. EMBO J 22(5):1180–1187. doi:10.1093/emboj/cdg112

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ordonez A, Snapp EL, Tan L, Miranda E, Marciniak SJ, Lomas DA (2013) Endoplasmic reticulum polymers impair luminal protein mobility and sensitize to cellular stress in alpha1-antitrypsin deficiency. Hepatology 57(5):2049–2060. doi:10.1002/hep.26173

    CAS  PubMed  Google Scholar 

  • Ou WJ, Cameron PH, Thomas DY, Bergeron JJ (1993) Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364(6440):771–776. doi:10.1038/364771a0

    CAS  PubMed  Google Scholar 

  • Pahl HL, Baeuerle PA (1995) A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBO J 14(11):2580–2588

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pahl HL, Baeuerle PA (1996) Activation of NF-kappa B by ER stress requires both Ca2+ and reactive oxygen intermediates as messengers. FEBS Lett 392(2):129–136

    CAS  PubMed  Google Scholar 

  • Pahl HL, Sester M, Burgert HG, Baeuerle PA (1996) Activation of transcription factor NF-kappaB by the adenovirus E3/19K protein requires its ER retention. J Cell Biol 132(4):511–522

    CAS  PubMed  Google Scholar 

  • Pan S, Huang L, McPherson J, Muzny D, Rouhani F, Brantly M, Gibbs R, Sifers RN (2009) Single nucleotide polymorphism-mediated translational suppression of endoplasmic reticulum mannosidase I modifies the onset of end-stage liver disease in alpha1-antitrypsin deficiency. Hepatology 50(1):275–281. doi:10.1002/hep.22974

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pan S, Wang S, Utama B, Huang L, Blok N, Estes MK, Moremen KW, Sifers RN (2011) Golgi localization of ERManI defines spatial separation of the mammalian glycoprotein quality control system. Mol Biol Cell 22(16):2810–2822. doi:10.1091/mbc.E11-02-0118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pan S, Cheng X, Sifers RN (2013) Golgi-situated endoplasmic reticulum alpha-1, 2-mannosidase contributes to the retrieval of ERAD substrates through a direct interaction with gamma-COP. Mol Biol Cell 24(8):1111–1121. doi:10.1091/mbc.E12-12-0886

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perlmutter DH (2006) The role of autophagy in alpha-1-antitrypsin deficiency: a specific cellular response in genetic diseases associated with aggregation-prone proteins. Autophagy 2(4):258–263

    CAS  PubMed  Google Scholar 

  • Picard V, Dautzenberg MD, Villoutreix BO, Orliaguet G, Alhenc-Gelas M, Aiach M (2003) Antithrombin Phe229Leu: a new homozygous variant leading to spontaneous antithrombin polymerization in vivo associated with severe childhood thrombosis. Blood 102(3):919–925. doi:10.1182/blood-2002-11-3391

    CAS  PubMed  Google Scholar 

  • Pincus D, Chevalier MW, Aragon T, van Anken E, Vidal SE, El-Samad H, Walter P (2010) BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol 8(7), e1000415. doi:10.1371/journal.pbio.1000415

    PubMed Central  PubMed  Google Scholar 

  • Poller W, Faber JP, Weidinger S, Tief K, Scholz S, Fischer M, Olek K, Kirchgesser M, Heidtmann HH (1993) A leucine-to-proline substitution causes a defective alpha 1-antichymotrypsin allele associated with familial obstructive lung disease. Genomics 17(3):740–743. doi:10.1006/geno.1993.1396

    CAS  PubMed  Google Scholar 

  • Qu D, Teckman JH, Omura S, Perlmutter DH (1996) Degradation of a mutant secretory protein, alpha1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J Biol Chem 271(37):22791–22795

    CAS  PubMed  Google Scholar 

  • Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450(7170):663–669. doi:10.1038/nature06384

    CAS  PubMed  Google Scholar 

  • Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435. doi:10.1152/physrev.00030.2009

    CAS  PubMed  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529. doi:10.1038/nrm2199

    CAS  PubMed  Google Scholar 

  • Roussel BD, Newton TM, Malzer E, Simecek N, Haq I, Thomas SE, Burr ML, Lehner PJ, Crowther DC, Marciniak SJ, Lomas DA (2013) Sterol metabolism regulates neuroserpin polymer degradation in the absence of the unfolded protein response in the dementia FENIB. Hum Mol Genet 22(22):4616–4626. doi:10.1093/hmg/ddt310

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rudnick DA, Liao Y, An JK, Muglia LJ, Perlmutter DH, Teckman JH (2004) Analyses of hepatocellular proliferation in a mouse model of alpha-1-antitrypsin deficiency. Hepatology 39(4):1048–1055. doi:10.1002/hep.20118

    CAS  PubMed  Google Scholar 

  • Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14(1):20–28

    CAS  PubMed  Google Scholar 

  • Saleh M, Vaillancourt JP, Graham RK, Huyck M, Srinivasula SM, Alnemri ES, Steinberg MH, Nolan V, Baldwin CT, Hotchkiss RS, Buchman TG, Zehnbauer BA, Hayden MR, Farrer LA, Roy S, Nicholson DW (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429(6987):75–79. doi:10.1038/nature02451

    CAS  PubMed  Google Scholar 

  • Schamel WW, Kuppig S, Becker B, Gimborn K, Hauri HP, Reth M (2003) A high-molecular-weight complex of membrane proteins BAP29/BAP31 is involved in the retention of membrane-bound IgD in the endoplasmic reticulum. Proc Natl Acad Sci USA 100(17):9861–9866. doi:10.1073/pnas.1633363100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schipanski A, Lange S, Segref A, Gutschmidt A, Lomas DA, Miranda E, Schweizer M, Hoppe T, Glatzel M (2013) A novel interaction between aging and ER overload in a protein conformational dementia. Genetics 193(3):865–876. doi:10.1534/genetics.112.149088

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt BZ, Perlmutter DH (2005) Grp78, Grp94, and Grp170 interact with alpha1-antitrypsin mutants that are retained in the endoplasmic reticulum. Am J Physiol Gastrointest Liver Physiol 289(3):G444–455. doi:10.1152/ajpgi.00237.2004

    CAS  PubMed  Google Scholar 

  • Schuck S, Prinz WA, Thorn KS, Voss C, Walter P (2009) Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol 187(4):525–536. doi:10.1083/jcb.200907074

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shen J, Chen X, Hendershot L, Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3(1):99–111

    CAS  PubMed  Google Scholar 

  • Sidrauski C, Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90(6):1031–1039

    CAS  PubMed  Google Scholar 

  • Sifers RN (1992) Protein transport. Z and the insoluble answer. Nature 357(6379):541–542. doi:10.1038/357541a0

    CAS  PubMed  Google Scholar 

  • Sifers RN, Brashears-Macatee S, Kidd VJ, Muensch H, Woo SL (1988) A frameshift mutation results in a truncated alpha 1-antitrypsin that is retained within the rough endoplasmic reticulum. J Biol Chem 263(15):7330–7335

    CAS  PubMed  Google Scholar 

  • So JS, Hur KY, Tarrio M, Ruda V, Frank-Kamenetsky M, Fitzgerald K, Koteliansky V, Lichtman AH, Iwawaki T, Glimcher LH, Lee AH (2012) Silencing of lipid metabolism genes through IRE1alpha-mediated mRNA decay lowers plasma lipids in mice. Cell Metab 16(4):487–499. doi:10.1016/j.cmet.2012.09.004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sveger T (1976) Liver disease in alpha1-antitrypsin deficiency detected by screening of 200,000 infants. N Engl J Med 294(24):1316–1321. doi:10.1056/NEJM197606102942404

    CAS  PubMed  Google Scholar 

  • Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190. doi:10.1038/ncb0311-184

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tam AB, Mercado EL, Hoffmann A, Niwa M (2012) ER stress activates NF-kappaB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS One 7(10), e45078. doi:10.1371/journal.pone.0045078

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tan L, Dickens JA, Demeo DL, Miranda E, Perez J, Rashid ST, Day J, Ordonez A, Marciniak SJ, Haq I, Barker AF, Campbell EJ, Eden E, McElvaney NG, Rennard SI, Sandhaus RA, Stocks JM, Stoller JK, Strange C, Turino G, Rouhani FN, Brantly M, Lomas DA (2014) Circulating polymers in alpha1-antitrypsin deficiency. Eur Respir J 43(5):1501–1504. doi:10.1183/09031936.00111213

    CAS  PubMed  Google Scholar 

  • Teckman JH, Perlmutter DH (2000) Retention of mutant alpha(1)-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am J Physiol Gastrointest Liver Physiol 279(5):G961–974

    CAS  PubMed  Google Scholar 

  • Teckman JH, Burrows J, Hidvegi T, Schmidt B, Hale PD, Perlmutter DH (2001) The proteasome participates in degradation of mutant alpha 1-antitrypsin Z in the endoplasmic reticulum of hepatoma-derived hepatocytes. J Biol Chem 276(48):44865–44872. doi:10.1074/jbc.M103703200, M103703200 [pii]

    CAS  PubMed  Google Scholar 

  • Teckman JH, An JK, Blomenkamp K, Schmidt B, Perlmutter D (2004) Mitochondrial autophagy and injury in the liver in alpha 1-antitrypsin deficiency. Am J Physiol Gastrointest Liver Physiol 286(5):G851–862. doi:10.1152/ajpgi.00175.2003

    CAS  PubMed  Google Scholar 

  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101(3):249–258

    CAS  PubMed  Google Scholar 

  • Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–666

    CAS  PubMed  Google Scholar 

  • van’t Wout EF, Dickens JA, van Schadewijk A, Haq I, Kwok HF, Ordonez A, Murphy G, Stolk J, Lomas DA, Hiemstra PS, Marciniak SJ (2014) Increased ERK signalling promotes inflammatory signalling in primary airway epithelial cells expressing Z alpha1-antitrypsin. Hum Mol Genet 23(4):929–941. doi:10.1093/hmg/ddt487

    Google Scholar 

  • van’t Wout EF, van Schadewijk A, Lomas DA, Stolk J, Marciniak SJ, Hiemstra PS (2015) Function of monocytes and monocyte-derived macrophages in alpha1-antitrypsin deficiency. Eur Respir J 45:365–376. doi:10.1183/09031936.00046114

    Google Scholar 

  • Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9(12):944–957. doi:10.1038/nrm2546

    PubMed Central  CAS  PubMed  Google Scholar 

  • Voeltz GK, Rolls MM, Rapoport TA (2002) Structural organization of the endoplasmic reticulum. EMBO Rep 3(10):944–950. doi:10.1093/embo-reports/kvf202

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086. doi:10.1126/science.1209038

    CAS  PubMed  Google Scholar 

  • Wang H, Li Q, Shen Y, Sun A, Zhu X, Fang S, Shen Y (2011) The ubiquitin ligase Hrd1 promotes degradation of the Z variant alpha 1-antitrypsin and increases its solubility. Mol Cell Biochem 346(1–2):137–145. doi:10.1007/s11010-010-0600-9

    CAS  PubMed  Google Scholar 

  • Werner ED, Brodsky JL, McCracken AA (1996) Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc Natl Acad Sci USA 93(24):13797–13801

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Y, Whitman I, Molmenti E, Moore K, Hippenmeyer P, Perlmutter DH (1994) A lag in intracellular degradation of mutant alpha 1-antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha 1-antitrypsin deficiency. Proc Natl Acad Sci USA 91(19):9014–9018

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Y, Swulius MT, Moremen KW, Sifers RN (2003) Elucidation of the molecular logic by which misfolded alpha 1-antitrypsin is preferentially selected for degradation. Proc Natl Acad Sci USA 100(14):8229–8234. doi:10.1073/pnas.1430537100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A, Mori K (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 13(3):365–376. doi:10.1016/j.devcel.2007.07.018, S1534-5807(07)00300-0 [pii]

    CAS  PubMed  Google Scholar 

  • Yamasaki M, Li W, Johnson DJ, Huntington JA (2008) Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 455(7217):1255–1258. doi:10.1038/nature07394, nature07394 [pii]

    CAS  PubMed  Google Scholar 

  • Yamasaki M, Sendall TJ, Pearce MC, Whisstock JC, Huntington JA (2011) Molecular basis of alpha1-antitrypsin deficiency revealed by the structure of a domain-swapped trimer. EMBO Rep 12(10):1011–1017. doi:10.1038/embor.2011.171

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429(6994):841–847. doi:10.1038/nature02656

    CAS  PubMed  Google Scholar 

  • Ye Y, Shibata Y, Kikkert M, van Voorden S, Wiertz E, Rapoport TA (2005) Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc Natl Acad Sci USA 102(40):14132–14138. doi:10.1073/pnas.0505006102

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ying Z, Wang H, Fan H, Wang G (2011) The endoplasmic reticulum (ER)-associated degradation system regulates aggregation and degradation of mutant neuroserpin. J Biol Chem 286(23):20835–20844. doi:10.1074/jbc.M110.200808

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, Tohyama M (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276(17):13935–13940. doi:10.1074/jbc.M010677200

    CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891. doi:10.1016/s0092-8674(01)00611-0

    CAS  PubMed  Google Scholar 

  • Zhou M, Schekman R (1999) The engagement of Sec61p in the ER dislocation process. Mol Cell 4(6):925–934

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan J. Marciniak MD PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ordóñez, A., Marciniak, S.J. (2015). Endoplasmic Reticulum Stress and the Protein Overload Response in the Serpinopathies. In: Geiger, M., Wahlmüller, F., Furtmüller, M. (eds) The Serpin Family. Springer, Cham. https://doi.org/10.1007/978-3-319-22711-5_14

Download citation

Publish with us

Policies and ethics