Skip to main content

microRNAs and Fragile X Syndrome

  • Chapter
microRNA: Medical Evidence

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 888))

Abstract

Fragile X syndrome (FXS) is one of the major causes for autism and mental retardation in humans. The etiology of FXS is linked to the expansion of the CGG trinucleotide repeats, r(CGG), suppressing the fragile X mental retardation 1 (FMR1) gene on the X chromosome, resulting in a loss of fragile X mental retardation protein (FMRP) expression, which is required for regulating normal neuronal connectivity and plasticity. Recent studies have further identified that microRNAs are involved in the mechanisms underlying FXS pathogenesis at three different developmental stages. During early embryogenesis before the blastocyst stage, an embryonic stem cell (ESC)-specific microRNA, miR-302, interferes with FMR1 mRNA translation to maintain the stem cell status and inhibit neural development. After blastocyst, the downregulation of miR-302 releases FMRP synthesis and subsequently leads to neuronal development; yet, in FXS, certain r(CGG)-derived microRNAs, such as miR-fmr1s, are expressed and accumulated and then induce DNA hypermethylation on the FMR1 gene promoter regions, resulting in transcriptional inactivation of the FMR1 gene and the loss of FMRP. In normal neuronal development, FMRP is an RNA-binding protein responsible for interacting with miR-125 and miR-132 to regulate the signaling of Group 1 metabotropic glutamate receptor (mGluR1) and N-methyl-d-aspartate receptor (NMDAR), respectively, and consequently affecting synaptic plasticity. As a result, the loss of FMRP impairs these signaling controls and eventually causes FXS-associated disorders, such as autism and mental retardation. Based on these current findings, this chapter will summarize the etiological causes of FXS and further provides significant insights into the molecular mechanisms underlying microRNA-mediated FXS pathogenesis and the related therapy development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Handa V, Saha T, Usdin K. The fragile X syndrome repeats form RNA hairpins that do not activate the interferon-inducible protein kinase, PKR, but are cut by Dicer. Nucleic Acids Res. 2003;31:6243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krol J, Fiszer A, Mykowska A, Sobczak K, de Mezer M, Krzyzosiak WJ. Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol Cell. 2007;25:575–86.

    Article  CAS  PubMed  Google Scholar 

  3. Lin SL, Chang SJE, Ying SY. First in vivo evidence of microRNA-induced fragile X mental retardation syndrome. Mol Psychiatry. 2006;11:616–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chang SJE, Chang-Lin S, Chang D, Ying SY, Lin SL. Repeat-associated microRNA triggers fragile X syndrome in zebrafish. Open Neuropsychopharmacol J. 2008;1:6–18.

    Article  Google Scholar 

  5. Lin SL, Ying SY. Role of repeat-associated microRNAs (ramRNA) in fragile X syndrome (FXS). In: Ying SY, editor. Current perspectives in microRNAs. New York: Springer; 2008. p. 245–66.

    Chapter  Google Scholar 

  6. Hagerman RJ, Staley LW, O’Conner R, Lugenbeel K, Nelson D, McLean SD, Taylor A. Learning-disabled males with a fragile X CGG expansion in the upper premutation size range. Pediatrics. 1996;97:122–6.

    CAS  PubMed  Google Scholar 

  7. Jin P, Alisch RS, Warren ST. RNA and microRNAs in fragile X mental retardation. Nat Cell Biol. 2004;6:1048–53.

    Article  CAS  PubMed  Google Scholar 

  8. Eberhart DE, Malter HE, Feng Y, Warren ST. The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals. Hum Mol Genet. 1996;5:1083–91.

    Article  CAS  PubMed  Google Scholar 

  9. Tamanini F, Van Unen L, Bakker C, Sacchi N, Galjaard H, Oostra BA, Hoogeveen AT. Oligomerization properties of fragile-X mental-retardation protein (FMRP) and the fragile-X-related proteins FXR1P and FXR2P. Biochem J. 1999;343(Pt 3):517–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, Warren ST. DNA methylation represses FMR1 transcription in fragile X syndrome. Hum Mol Genet. 1992;1:397–400.

    Article  CAS  PubMed  Google Scholar 

  11. Tropepe V, Sive HL. Can zebrafish be used as a model to study the neurodevelopmental causes of autism? Genes Brain Behav. 2003;2:268–81.

    Article  CAS  PubMed  Google Scholar 

  12. Tucker B, Richards R, Lardelli M. Expression of three zebrafish orthologs of human FMR1-related genes and their phylogenetic relationships. Dev Genes Evol. 2004;214:567–74.

    Article  CAS  PubMed  Google Scholar 

  13. van ’t Padje S, Engels B, Blonden L, Severijnen LA, Verheijen F, Oostra BA, Willemsen R. Characterization of FMRP in zebrafish: evolutionary dynamics of the fmr1 gene. Dev Genes Evol. 2005;215:198–206.

    Article  CAS  Google Scholar 

  14. Lin SL, Chang D, Lin CH, Ying SY, Leu D, Wu DTS. Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res. 2011;39:1054–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin SL. Deciphering the mechanism behind induced pluripotent stem cell generation. Stem Cells. 2011;29:1645–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Muddashetty RS, Nalavadi VC, Gross C, Yao X, Xing L, Laur O, Warren ST, Bassell GJ. Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol Cell. 2011;42:673–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron. 2010;65:373–84.

    Article  CAS  PubMed  Google Scholar 

  18. Lopez-Bendito G, Shigemoto R, Kulik A, Vida I, Fairen A, Lujan R. Distribution of metabotropic GABA receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus during prenatal and postnatal development. Hippocampus. 2004;14:836–48.

    Article  CAS  PubMed  Google Scholar 

  19. Selby L, Zhang C, Sun QQ. Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci Lett. 2007;412:227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumari D, Gabrielian A, Wheeler D, Usdin K. The roles of Sp1, Sp3, USF1/USF2 and NRF-1 in the regulation and three-dimensional structure of the fragile X mental retardation gene promoter. Biochem J. 2005;386:297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin SL, Chang D, Wu DY, Ying SY. A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem Biophys Res Commun. 2003;310:754–60.

    Article  CAS  PubMed  Google Scholar 

  22. Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448:83–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin SL, Kim H, Ying SY. Intron-mediated RNA interference and microRNA (miRNA). Front Biosci. 2008;13:2216–30.

    Article  CAS  PubMed  Google Scholar 

  24. Lopez-Rangel E, Lewis ME. Loud and clear evidence for gene silencing by epigenetic mechanisms in autism spectrum and related neurodevelopmental disorders. Clin Genet. 2006;69:21–2.

    Article  CAS  PubMed  Google Scholar 

  25. Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA, Larsen BP, Kooy F, Willems PJ, Cras P, Kozlowski PB, Swain RA, Weiler IJ, Greenough WT. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet. 2001;98:161–7.

    Article  CAS  PubMed  Google Scholar 

  26. Brown V, Jin P, Ceman S, Darnell JC, O’Donnell WT, Tenenbaum SA, Jin X, Feng Y, Wilkinson KD, Keene JD, Darnell RB, Warren ST. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell. 2001;107:477–87.

    Article  CAS  PubMed  Google Scholar 

  27. Li Z, Zhang Y, Ku L, Wilkinson KD, Warren ST, Feng Y. The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Res. 2001;29:2276–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jin P, Zarnescu DC, Zhang F, Pearson CE, Lucchesi JC, Moses K, Warren ST. RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron. 2003;39:739–47.

    Article  CAS  PubMed  Google Scholar 

  29. Axmacher N, Mormann F, Fernandez G, Flger CE, Fell J. Memory formation by neuronal synchronization. Brain Res Rev. 2006;52:170–82.

    Article  PubMed  Google Scholar 

  30. Patenaude C, Chapman CA, Bertrand S, Congar P, Lacaille JC. GABAB receptor- and metabotropic glutamate receptor-dependent cooperative long-term potentiation of rat hippocampal GABAA synaptic transmission. J Physiol. 2003;553:155–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Godfraind JM, Reyniers E, De Boulle K, D’Hooge R, De Deyn PP, Bakker CE, Oostra BA, Kooy RF, Willems PJ. Long-term potentiation in the hippocampus of fragile X knockout mice. Am J Med Genet. 1996;64:246–51.

    Article  CAS  PubMed  Google Scholar 

  32. Snyder EM, Philpot BD, Huber KM, Dong X, Fallon JR, Bear MF. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci. 2001;4:1079–85.

    Article  CAS  PubMed  Google Scholar 

  33. Nosyreva ED, Huber KM. Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. J Neurophysiol. 2006;95:3291–5.

    Article  CAS  PubMed  Google Scholar 

  34. Hunt CA, Schenker LJ, Kennedy MB. PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. J Neurosci. 1996;16:1380–8.

    CAS  PubMed  Google Scholar 

  35. Sheng M, Sala C. PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci. 2001;24:1–29.

    Article  CAS  PubMed  Google Scholar 

  36. Meyer D, Bonhoeffer T, Scheuss V. Balance and stability of synaptic structures during synaptic plasticity. Neuron. 2014;82:430–43.

    Article  CAS  PubMed  Google Scholar 

  37. Bhattacharyya S, Biou V, Xu W, Schluter O, Malenka RC. A critical role for PSD-95/AKAP interactions in endocytosis of synaptic AMPA receptors. Nat Neurosci. 2009;12:172–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Lung Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lin, SL. (2015). microRNAs and Fragile X Syndrome. In: Santulli, G. (eds) microRNA: Medical Evidence. Advances in Experimental Medicine and Biology, vol 888. Springer, Cham. https://doi.org/10.1007/978-3-319-22671-2_7

Download citation

Publish with us

Policies and ethics