Skip to main content

microRNA Expression Profiling: Technologies, Insights, and Prospects

  • Chapter
microRNA: Medical Evidence

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 888))

Abstract

Since the early days of microRNA (miRNA) research, miRNA expression profiling technologies have provided important tools toward both better understanding of the biological functions of miRNAs and using miRNA expression as potential diagnostics. Multiple technologies, such as microarrays, next-generation sequencing, bead-based detection system, single-molecule measurements, and quantitative RT-PCR, have enabled accurate quantification of miRNAs and the subsequent derivation of key insights into diverse biological processes. As a class of ~22 nt long small noncoding RNAs, miRNAs present unique challenges in expression profiling that require careful experimental design and data analyses. We will particularly discuss how normalization and the presence of miRNA isoforms can impact data interpretation. We will present one example in which the consideration in data normalization has provided insights that helped to establish the global miRNA expression as a tumor suppressor. Finally, we discuss two future prospects of using miRNA profiling technologies to understand single cell variability and derive new rules for the functions of miRNA isoforms.

These authors are contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54; Epub 1993/12/03.

    Article  CAS  PubMed  Google Scholar 

  2. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6; Epub 2000/03/08.

    Article  CAS  PubMed  Google Scholar 

  3. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62; Epub 1993/12/03.

    Article  CAS  PubMed  Google Scholar 

  4. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73; PMCID: 3965103; Epub 2013/11/28

    Google Scholar 

  5. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8; Epub 2005/06/10.

    Article  CAS  PubMed  Google Scholar 

  6. Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 2004;5(9):R68; PMCID: 522875; Epub 2004/09/04.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14; PMCID: 2681231; Epub 2007/07/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, et al. MicroRNA expression in zebrafish embryonic development. Science. 2005;309(5732):310–1; Epub 2005/05/28.

    Article  CAS  PubMed  Google Scholar 

  9. Duan D, Zheng KX, Shen Y, Cao R, Jiang L, Lu Z, et al. Label-free high-throughput microRNA expression profiling from total RNA. Nucleic Acids Res. 2011;39(22), e154; PMCID: 3239174; Epub 2011/10/07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chapin SC, Appleyard DC, Pregibon DC, Doyle PS. Rapid microRNA profiling on encoded gel microparticles. Angew Chem Int Ed Engl. 2011;50(10):2289–93; PMCID: 4104285; Epub 2011/02/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baker M. MicroRNA profiling: separating signal from noise. Nat Methods. 2010;7(9):687–92; Epub 2010/09/02.

    Article  CAS  PubMed  Google Scholar 

  12. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, et al. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol. 2008;26(4):407–15; Epub 2008/04/09.

    Article  PubMed  Google Scholar 

  13. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858–62; Epub 2001/10/27.

    Article  CAS  PubMed  Google Scholar 

  14. Pawlicki JM, Steitz JA. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J Cell Biol. 2008;182(1):61–76; PMCID: 2447899; Epub 2008/07/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97; Epub 2004/01/28.

    Article  CAS  PubMed  Google Scholar 

  16. Starega-Roslan J, Krol J, Koscianska E, Kozlowski P, Szlachcic WJ, Sobczak K, et al. Structural basis of microRNA length variety. Nucleic Acids Res. 2011;39(1):257–68; PMCID: 3017592; Epub 2010/08/27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125(5):887–901; Epub 2006/06/06.

    Article  CAS  PubMed  Google Scholar 

  18. Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z, et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science. 2010;328(5985):1534–9; PMCID: 2902985; Epub 2010/06/19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Newman MA, Mani V, Hammond SM. Deep sequencing of microRNA precursors reveals extensive 3′ end modification. RNA. 2011;17(10):1795–803; PMCID: 3185913; Epub 2011/08/19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Nishibu T, Ukekawa R, et al. A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Res. 2010;20(10):1398–410; PMCID: 2945189; Epub 2010/08/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 2010;24(10):992–1009; PMCID: 2867214; Epub 2010/04/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fernandez-Valverde SL, Taft RJ, Mattick JS. Dynamic isomiR regulation in Drosophila development. RNA. 2010;16(10):1881–8; PMCID: 2941097; Epub 2010/09/02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D’Andrade PN, Fulmer-Smentek S. Agilent microRNA microarray profiling system. Methods Mol Biol. 2012;822:85–102; Epub 2011/12/07.

    Article  PubMed  Google Scholar 

  24. Wang H, Ach RA, Curry B. Direct and sensitive miRNA profiling from low-input total RNA. RNA. 2007;13(1):151–9; PMCID: 1705746; Epub 2006/11/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo Y, Liu J, Elfenbein SJ, Ma Y, Zhong M, Qiu C, et al. Characterization of the mammalian miRNA turnover landscape. Nucleic Acids Res. 2015;43(4):2326–41; PMCID: 4344502; Epub 2015/02/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20), e179; PMCID: 1292995; Epub 2005/11/30.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schirle NT, MacRae IJ. The crystal structure of human Argonaute2. Science. 2012;336(6084):1037–40; PMCID: 3521581; Epub 2012/04/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frank F, Sonenberg N, Nagar B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature. 2010;465(7299):818–22; Epub 2010/05/28.

    Article  CAS  PubMed  Google Scholar 

  29. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294(5543):862–4; Epub 2001/10/27.

    Article  CAS  PubMed  Google Scholar 

  30. Hwang HW, Wentzel EA, Mendell JT. Cell-cell contact globally activates microRNA biogenesis. Proc Natl Acad Sci U S A. 2009;106(17):7016–21; PMCID: 2678439; Epub 2009/04/11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mori M, Triboulet R, Mohseni M, Schlegelmilch K, Shrestha K, Camargo FD, et al. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer. Cell. 2014;156(5):893–906; PMCID: 3982296; Epub 2014/03/04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol. 2006;13(1):13–21; PMCID: 2950615; Epub 2005/12/22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257–61; PMCID: 1413718; Epub 2006/02/08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004; PMCID: 365734; Epub 2004/02/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J, et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev. 2009;23(23):2700–4; PMCID: 2788328; Epub 2009/11/12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39(5):673–7; Epub 2007/04/03.

    Article  CAS  PubMed  Google Scholar 

  37. Ravi A, Gurtan AM, Kumar MS, Bhutkar A, Chin C, Lu V, et al. Proliferation and tumorigenesis of a murine sarcoma cell line in the absence of DICER1. Cancer Cell. 2012;21(6):848–55; PMCID: 3385871; Epub 2012/06/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bogerd HP, Whisnant AW, Kennedy EM, Flores O, Cullen BR. Derivation and characterization of Dicer- and microRNA-deficient human cells. RNA. 2014;20(6):923–37; PMCID: 4024645; Epub 2014/04/24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Flores O, Kennedy EM, Skalsky RL, Cullen BR. Differential RISC association of endogenous human microRNAs predicts their inhibitory potential. Nucleic Acids Res. 2014;42(7):4629–39; PMCID: 3985621; Epub 2014/01/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA, et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet. 2009;41(3):365–70; Epub 2009/02/17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Walz AL, Ooms A, Gadd S, Gerhard DS, Smith MA, Guidry Auvil JM, et al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell. 2015;27(2):286–97; Epub 2015/02/12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wegert J, Ishaque N, Vardapour R, Georg C, Gu Z, Bieg M, et al. Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell. 2015;27(2):298–311; Epub 2015/02/12.

    Article  CAS  PubMed  Google Scholar 

  43. Kai ZS, Pasquinelli AE. MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol. 2010;17(1):5–10; Epub 2010/01/07.

    Article  CAS  PubMed  Google Scholar 

  44. Ji L, Chen X. Regulation of small RNA stability: methylation and beyond. Cell Res. 2012;22(4):624–36; PMCID: 3317568; Epub 2012/03/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rowley JD. Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer. 2001;1(3):245–50; Epub 2002/03/21.

    Article  CAS  PubMed  Google Scholar 

  46. Sambrook J, Russell DW. Separation of RNA according to size: electrophoresis of glyoxylated RNA through agarose gels. CSH Protoc. 2006; 2006(1); Epub 2006/01/01

    Google Scholar 

  47. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science. 2008;320(5883):1643–7; PMCID: 2587246; Epub 2008/06/21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Spies N, Burge CB, Bartel DP. 3′ UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts. Genome Res. 2013;23(12):2078–90; PMCID: 3847777; Epub 2013/09/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ross AF, Oleynikov Y, Kislauskis EH, Taneja KL, Singer RH. Characterization of a beta-actin mRNA zipcode-binding protein. Mol Cell Biol. 1997;17(4):2158–65; PMCID: 232064; Epub 1997/04/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ruther U, Garber C, Komitowski D, Muller R, Wagner EF. Deregulated c-fos expression interferes with normal bone development in transgenic mice. Nature. 1987;325(6103):412–6; Epub 1987/01/04.

    Article  CAS  PubMed  Google Scholar 

  51. Mayr C, Bartel DP. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138(4):673–84; PMCID: 2819821; Epub 2009/08/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11; Epub 2001/11/02.

    Article  CAS  PubMed  Google Scholar 

  53. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7; Epub 1997/07/01.

    Article  CAS  PubMed  Google Scholar 

  54. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8; Epub 1994/02/17.

    Article  CAS  PubMed  Google Scholar 

  55. Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A. MicroRNAs can generate thresholds in target gene expression. Nat Genet. 2011;43(9):854–9; PMCID: 3163764; Epub 2011/08/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bosson AD, Zamudio JR, Sharp PA. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell. 2014;56(3):347–59; Epub 2014/12/03.

    Article  CAS  PubMed  Google Scholar 

  57. Tang F, Hajkova P, Barton SC, Lao K, Surani MA. MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res. 2006;34(2), e9; PMCID: 1351374; Epub 2006/01/26.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lu J, Tsourkas A. Imaging individual microRNAs in single mammalian cells in situ. Nucleic Acids Res. 2009;37(14), e100; PMCID: 2724290; Epub 2009/06/12.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods. 2006;3(1):27–9; Epub 2005/12/22.

    Article  CAS  PubMed  Google Scholar 

  60. White AK, VanInsberghe M, Petriv OI, Hamidi M, Sikorski D, Marra MA, et al. High-throughput microfluidic single-cell RT-qPCR. Proc Natl Acad Sci U S A. 2011;108(34):13999–4004; PMCID: 3161570; Epub 2011/08/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Williams Z, Ben-Dov IZ, Elias R, Mihailovic A, Brown M, Rosenwaks Z, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci U S A. 2013;110(11):4255–60; PMCID: 3600502; Epub 2013/02/27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33; PMCID: 3794896; Epub 2009/01/27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roden, C., Mastriano, S., Wang, N., Lu, J. (2015). microRNA Expression Profiling: Technologies, Insights, and Prospects. In: Santulli, G. (eds) microRNA: Medical Evidence. Advances in Experimental Medicine and Biology, vol 888. Springer, Cham. https://doi.org/10.1007/978-3-319-22671-2_21

Download citation

Publish with us

Policies and ethics