Skip to main content

microRNA and Wound Healing

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 888))

Abstract

microRNAs (miRNAs) are small noncoding RNA molecules which play pivotal roles in wound healing. The increased expression of certain genes and expression of some others represent a key component of the wound biology and are largely under the regulation of naturally occurring miRNAs. Understanding the dysregulated miRNAs in chronic wound biology will therefore enable the development of newer therapies. This chapter focuses on the miRNAs that can be potentially targeted for improving skin wound healing and the challenges in miRNA therapy, including considerations in miRNA target identification and delivery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gottrup F. A specialized wound-healing center concept: importance of a multidisciplinary department structure and surgical treatment facilities in the treatment of chronic wounds. Am J Surg. 2004;187(5A):38S–43.

    Article  PubMed  Google Scholar 

  2. Sen CK, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17(6):763–71.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tay Y, et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455(7216):1124–8.

    Article  CAS  PubMed  Google Scholar 

  5. Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008;30(4):460–71.

    Article  PubMed  Google Scholar 

  6. Ravishankar D. Global analysis of microRNA tools and services market: evolving microRNA market provides an opportunity for vendors of qRT-PCR and functional tools. Frost & Sullivan Research Service. Sep 2003.

    Google Scholar 

  7. Analysis of microRNA tools and services market in Europe: microRNA research triggers tremendous growth in tools market. Frost & Sullivan Research Service. Feb 2012.

    Google Scholar 

  8. Sen CK, Roy S. OxymiRs in cutaneous development, wound repair and regeneration. Semin Cell Dev Biol. 2012;23(9):971–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Loscalzo J. The cellular response to hypoxia: tuning the system with microRNAs. J Clin Invest. 2010;120(11):3815–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cascio S, et al. miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells. J Cell Physiol. 2010;224(1):242–9.

    CAS  PubMed  Google Scholar 

  11. Rane S, et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 2009;104(7):879–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kulshreshtha R, et al. A microRNA component of the hypoxic response. Cell Death Differ. 2008;15(4):667–71.

    Article  CAS  PubMed  Google Scholar 

  13. Taganov KD, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103(33):12481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.

    Article  CAS  PubMed  Google Scholar 

  15. Martinez-Nunez RT, et al. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem. 2009;284(24):16334–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Connell RM, et al. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A. 2009;106(17):7113–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tili E, Croce CM, Michaille JJ. miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol. 2009;28(5):264–84.

    Article  CAS  PubMed  Google Scholar 

  18. Tili E, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol. 2007;179(8):5082–9.

    Article  CAS  PubMed  Google Scholar 

  19. Suarez Y, et al. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol. 2010;184(1):21–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roy S, et al. Characterization of the acute temporal changes in excisional murine cutaneous wound inflammation by screening of the wound-edge transcriptome. Physiol Genomics. 2008;34(2):162–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakamachi Y, et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum. 2009;60(5):1294–304.

    Article  PubMed  Google Scholar 

  22. Recchiuti A, et al. MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. FASEB J. 2011;25(2):544–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Das A, et al. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol. 2014;192(3):1120–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aragones J, et al. Oxygen sensors at the crossroad of metabolism. Cell Metab. 2009;9(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  25. Boutilier RG, St-Pierre J. Surviving hypoxia without really dying. Comp Biochem Physiol A Mol Integr Physiol. 2000;126(4):481–90.

    Article  CAS  PubMed  Google Scholar 

  26. Ho JJ, et al. Functional importance of Dicer protein in the adaptive cellular response to hypoxia. J Biol Chem. 2012;287(34):29003–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghatak S, Chan YC, Khanna S, Banerjee J, Weist J, Roy S, Sen CK. Barrier function of the repaired skin is disrupted following arrest of Dicer in keratinocytes. Mol Ther. 2015;23(7):1201–10.

    Article  CAS  PubMed  Google Scholar 

  28. Wu C, et al. Hypoxia potentiates microRNA-mediated gene silencing through posttranslational modification of Argonaute2. Mol Cell Biol. 2011;31(23):4760–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sen CK. Wound healing essentials: let there be oxygen. Wound Repair Regen. 2009;17(1):1–18.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59(3):527–605.

    CAS  PubMed  Google Scholar 

  31. Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A. 1994;91(23):10771–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clark IA, Cowden WB, Hunt NH. Free radical-induced pathology. Med Res Rev. 1985;5(3):297–332.

    Article  CAS  PubMed  Google Scholar 

  33. Dormandy TL. Free-radical pathology and medicine. A review. J R Coll Physicians Lond. 1989;23(4):221–7.

    CAS  PubMed  Google Scholar 

  34. Slater TF. Free-radical mechanisms in tissue injury. Biochem J. 1984;222(1):1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996;10(7):709–20.

    CAS  PubMed  Google Scholar 

  36. Sen CK. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem Pharmacol. 1998;55(11):1747–58.

    Article  CAS  PubMed  Google Scholar 

  37. Sen CK. Cellular thiols and redox-regulated signal transduction. Curr Top Cell Regul. 2000;36:1–30.

    Article  CAS  PubMed  Google Scholar 

  38. Chen L, Endler A, Shibasaki F. Hypoxia and angiogenesis: regulation of hypoxia-inducible factors via novel binding factors. Exp Mol Med. 2009;41(12):849–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sarkar K, et al. Tie2-dependent knockout of HIF-1 impairs burn wound vascularization and homing of bone marrow-derived angiogenic cells. Cardiovasc Res. 2012;93(1):162–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Giannakakis A, et al. miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther. 2008;7(2):255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang X, et al. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 2009;35(6):856–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chan SY, et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009;10(4):273–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hunt TK, et al. Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal. 2007;9(8):1115–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Loffler M, et al. Wound fluid lactate concentration: a helpful marker for diagnosing soft-tissue infection in diabetic foot ulcers? Preliminary findings. Diabet Med. 2011;28(2):175–8.

    Article  CAS  PubMed  Google Scholar 

  45. Hashimoto T, et al. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J. 2007;21(10):2602–12.

    Article  CAS  PubMed  Google Scholar 

  46. Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 2002;277(26):23111–5.

    Article  CAS  PubMed  Google Scholar 

  47. Sen CK, et al. Oxidant-induced vascular endothelial growth factor expression in human keratinocytes and cutaneous wound healing. J Biol Chem. 2002;277(36):33284–90.

    Article  CAS  PubMed  Google Scholar 

  48. Wang J, et al. c-Met upregulates aquaporin 3 expression in human gastric carcinoma cells via the ERK signalling pathway. Cancer Lett. 2012;319(1):109–17.

    Article  CAS  PubMed  Google Scholar 

  49. Levin MH, Verkman AS. Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. Invest Ophthalmol Vis Sci. 2006;47(10):4365–72.

    Article  PubMed  Google Scholar 

  50. Elia L, et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation. 2009;120(23):2377–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haase I, et al. Regulation of keratinocyte shape, migration and wound epithelialization by IGF-1- and EGF-dependent signalling pathways. J Cell Sci. 2003;116(Pt 15):3227–38.

    Article  CAS  PubMed  Google Scholar 

  52. Shilo S, et al. Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arterioscler Thromb Vasc Biol. 2008;28(3):471–7.

    Article  CAS  PubMed  Google Scholar 

  53. Kuehbacher A, et al. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007;101(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  54. Suarez Y, et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100(8):1164–73.

    Article  CAS  PubMed  Google Scholar 

  55. Caporali A, Emanueli C. MicroRNA regulation in angiogenesis. Vascul Pharmacol. 2011;55(4):79–86.

    Article  CAS  PubMed  Google Scholar 

  56. Sen CK, et al. Oxygen, oxidants, and antioxidants in wound healing: an emerging paradigm. Ann N Y Acad Sci. 2002;957:239–49.

    Article  CAS  PubMed  Google Scholar 

  57. Chan YC, et al. miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem. 2011;286(3):2047–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Suarez Y, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A. 2008;105(37):14082–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood. 2008;111(3):1217–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anand S, et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med. 2010;16(8):909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Poliseno L, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006;108(9):3068–71.

    Article  CAS  PubMed  Google Scholar 

  62. Litz J, Krystal GW. Imatinib inhibits c-Kit-induced hypoxia-inducible factor-1alpha activity and vascular endothelial growth factor expression in small cell lung cancer cells. Mol Cancer Ther. 2006;5(6):1415–22.

    Article  CAS  PubMed  Google Scholar 

  63. Levin AA. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta. 1999;1489(1):69–84.

    Article  CAS  PubMed  Google Scholar 

  64. Geary RS, Yu RZ, Levin AA. Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr Opin Investig Drugs. 2001;2(4):562–73.

    CAS  PubMed  Google Scholar 

  65. Ben-Shushan D, et al. Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Deliv Transl Res. 2014;4(1):38–49.

    Article  CAS  PubMed  Google Scholar 

  66. Gilleron J, et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. 2013;31(7):638–46.

    Article  CAS  PubMed  Google Scholar 

  67. Henry JC, Azevedo-Pouly AC, Schmittgen TD. MicroRNA replacement therapy for cancer. Pharm Res. 2011;28(12):3030–42.

    Article  CAS  PubMed  Google Scholar 

  68. Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther. 2006;13(6):496–502.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Supported by NIH RO1 grants GM069589, GM077185, and NR013898 to Chandan K Sen and DK076566 to Sashwati Roy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaideep Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Banerjee, J., Sen, C.K. (2015). microRNA and Wound Healing. In: Santulli, G. (eds) microRNA: Medical Evidence. Advances in Experimental Medicine and Biology, vol 888. Springer, Cham. https://doi.org/10.1007/978-3-319-22671-2_15

Download citation

Publish with us

Policies and ethics