Skip to main content

microRNA and Kidney Transplantation

  • Chapter
microRNA: Medical Evidence

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 888))

Abstract

The kidney serves as the main clearance organ of our body, filtrating and excreting metabolic waste products. Various intrinsic and extrinsic conditions can lead to kidney injury, roughly 0.1 % of the population suffer from end stage renal disease. Renal transplantation reinstitutes an almost normal quality of life; again it is cost effective and thus the preferred treatment of terminal renal failure.

miRNAs play pivotal roles in immune responses and inflammation, which makes them particularly interesting in the field of transplantation and in understanding the molecular pathways of allograft pathologies such as delayed function or cellular and antibody mediated rejection. As kidney biopsy is part of the routine disease monitoring, the identification of miRNA pattern is feasible in different stages of the injury.

Furthermore miRNAs are easy to detect not only in tissue samples but also in body fluids such as blood and urine. Their regulatory capacity of biological processes together with their stability makes them excellent candidates for noninvasive monitoring of kidney pathology. There is an accumulating knowledge about diseases-specific miRNA signatures in distinct kidney injuries. In the following chapter we present the current understanding of miRNAs regulation of intragraft processes after kidney transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harvey SJ, Jarad G, Cunningham J, Goldberg S, Schermer B, Harfe BD, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol. 2008;19(11):2150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Ishani A, et al. US renal data system 2013 annual data report. Am J Kidney Dis. 2014;63(1 Suppl):A7.

    Article  PubMed  Google Scholar 

  3. Matas AJ, Smith JM, Skeans MA, Thompson B, Gustafson SK, Stewart DE, et al. OPTN/SRTR 2013 annual data report: kidney. Am J Transplant. 2015;15(S2):1–34.

    Article  PubMed  Google Scholar 

  4. Kainz A, Wilflingseder J, Mitterbauer C, Haller M, Burghuber C, Perco P, et al. Steroid pretreatment of organ donors to prevent postischemic renal allograft failure: a randomized, controlled trial. Ann Intern Med. 2010;153(4):222–30.

    Article  PubMed  Google Scholar 

  5. Wei Q, Bhatt K, He HZ, Mi QS, Haase VH, Dong Z. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury. J Am Soc Nephrol. 2010;21(5):756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weight SC, Bell PR, Nicholson ML. Renal ischaemia–reperfusion injury. Br J Surg. 1996;83(2):162–70.

    Article  CAS  PubMed  Google Scholar 

  7. Bhatt K, Mi QS, Dong Z. microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am J Physiol Renal Physiol. 2011;300(3):F602–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mueller TF, Reeve J, Jhangri GS, Mengel M, Jacaj Z, Cairo L, et al. The transcriptome of the implant biopsy identifies donor kidneys at increased risk of delayed graft function. Am J Transplant. 2008;8(1):78–85.

    CAS  PubMed  Google Scholar 

  10. Marin T, Gongol B, Chen Z, Woo B, Subramaniam S, Chien S, et al. Mechanosensitive microRNAs-role in endothelial responses to shear stress and redox state. Free Radic Biol Med. 2013;64:61–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Godwin JG, Geb X, Stephana K, Jurischb A, Tullius SG, Iacominia J. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci U S A. 2010;107(32):14339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, et al. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem. 2007;282(4):2135–43.

    Article  CAS  PubMed  Google Scholar 

  13. Rusca N, Monticelli S. MiR-146a in immunity and disease. Mol Biol Int. 2011;2011:437301.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gu S, Chan WY. Flexible and versatile as a chameleon-sophisticated functions of microRNA-199a. Int J Mol Sci. 2012;13(7):8449–66.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Penna E1, Orso F, Cimino D, Tenaglia E, Lembo A, Quaglino E, et al. microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J. 2011;30(10):1990–2007.

    Google Scholar 

  16. Sun Y, Koo S, White N, Peralta E, Esau C, Dean NM, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 2004;32(22), e188.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Locke JM, da Silva XG, Dawe HR, Rutter GA, Harries LW. Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion. Diabetologia. 2014;57(1):122–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen YQ, Wang XX, Yao XM, Zhang DL, Yang XF, Tian SF, et al. Abated microRNA-195 expression protected mesangial cells from apoptosis in early diabetic renal injury in mice. J Nephrol. 2012;25(4):566–76.

    Article  CAS  PubMed  Google Scholar 

  19. Shapiro MD, Bagley J, Latz J, Godwin JG, Ge X, Tullius SG, et al. MicroRNA expression data reveals a signature of kidney damage following ischemia reperfusion injury. PLoS One. 2011;6(8):e23011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aguado-Fraile E, Ramos E, Sáenz-Morales D, Conde E, Blanco-Sánchez I, Stamatakis K, et al. miR-127 protects proximal tubule cells against ischemia/reperfusion: identification of Kinesin family member 3B as miR-127 target. PloS One. 2012;7(9):e44305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilflingseder J, Sunzenauer J, Toronyi E, Heinzel A, Kainz A, Mayer B, et al. Molecular pathogenesis of post-transplant acute kidney injury: assessment of whole-genome mRNA and miRNA profiles. PLoS One. 2014;9(8):e104164.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wei L, Wang M, Qu X, Mah A, Xiong X, Harris AG, et al. Differential expression of microRNAs during allograft rejection. Am J Transplant. 2012;12(5):1113–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee ST, Chu K, Jung KH, Yoon HJ, Jeon D, Kang KM, et al. MicroRNAs induced during ischemic preconditioning. Stroke. 2010;41(8):1646–51.

    Article  PubMed  Google Scholar 

  24. Lee YJ, Johnson KR, Hallenbeck JM. Global protein conjugation by ubiquitin-like-modifiers during ischemic stress is regulated by microRNAs and confers robust tolerance to ischemia. PLoS One. 2012;7(10), e47787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 2008;283(23):15878–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010;31(22):2765–73.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lorenzen JM, Kielstein JT, Hafer C, Gupta SK, Kumpers P, Faulhaber-Walter R, et al. Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol. 2011;6(7):1540–6.

    Article  CAS  PubMed  Google Scholar 

  28. Ramachandran K, Saikumar J, Bijol V, Koyner JL, Qian J, Betensky RA, et al. Human miRNome profiling identifies microRNAs differentially present in the urine after kidney injury. Clin Chem. 2013;59(12):1742–52.

    Article  CAS  PubMed  Google Scholar 

  29. Dykxhoorn DM. MicroRNAs and metastasis: little RNAs go a long way. Cancer Res. 2010;70(16):6401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis BS, Amir O. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail. 2012;14(2):147–54.

    Article  CAS  PubMed  Google Scholar 

  31. Oak SR, Murray L, Herath A, Sleeman M, Anderson I, Joshi AD, et al. A micro RNA processing defect in rapidly progressing idiopathic pulmonary fibrosis. PLoS One. 2011;6(6), e21253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhattacharyya M, Bandyopadhyay S. Studying the differential co-expression of microRNAs reveals significant role of white matter in early Alzheimer’s progression. Mol Biosyst. 2013;9(3):457–66.

    Article  CAS  PubMed  Google Scholar 

  33. Saikumar J, Hoffmann D, Kim TM, Gonzalez VR, Zhang Q, Goering PL, et al. Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol Sci. 2012;129(2):256–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Faraoni I, Antonetti FR, Cardone J, Bonmassar E. miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta. 2009;1792(6):497–505.

    Article  CAS  PubMed  Google Scholar 

  35. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2(100):ra81.

    Article  PubMed  Google Scholar 

  36. Agarwal A, Fanelli G, Letizia M, Tung SL, Boardman D, Lechler R, et al. Regulatory T cell-derived exosomes: possible therapeutic and diagnostic tools in transplantation. Front Immunol. 2014;5:555.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC, et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia–reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 2012;82:412–27.

    Article  CAS  PubMed  Google Scholar 

  38. Lorenzen J, Batkai S, Thum T. Regulation of cardiac and renal ischemia–reperfusion injury by microRNAs. Free Radic Biol Med. 2013;64:78–84.

    Article  CAS  PubMed  Google Scholar 

  39. Yu X, Huang C, Song B, Xiao Y, Fang M, Feng J, et al. CD4+ CD25+ regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model. Cell Immunol. 2013;285(1–2):62–8.

    Article  CAS  PubMed  Google Scholar 

  40. Humphreys BD, Bonventre JV. Mesenchymal stem cells in acute kidney injury. Annu Rev Med. 2008;59:311–25.

    Article  CAS  PubMed  Google Scholar 

  41. Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012;4(121):121ra18.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xu X, Kriegel AJ, Liu Y, Usa K, Mladinov D, Liu H, Fang Y, et al. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int. 2012;82(11):1167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Creely JJ, DiMari SJ, Howe AM, Haralson MA. Effects of transforming growth factor-beta on collagen synthesis by normal rat kidney epithelial cells. Am J Pathol. 1992;140(1):45–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ben-Dov IZ, Muthukumar T, Morozov P, Mueller FB, Tuschl T, Suthanthiran M. MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis. Transplantation. 2012;94(11):1086–94.

    Article  CAS  PubMed  Google Scholar 

  45. Jajoo S, Mukherjea D, Kaur T, Sheehan KE, Sheth S, Borse V, Rybak LP, et al. Essential role of NADPH oxidase-dependent reactive oxygen species generation in regulating microRNA-21 expression and function in prostate cancer. Antioxid Redox Signal. 2013;19(16):1863–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980–4.

    Article  CAS  PubMed  Google Scholar 

  47. Cheng Y, Zhu P, Yang J, Liu X, Dong S, Wang X, Chun B, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res. 2010;87(3):431–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O’Connell RM, Zhao JL, Rao DS. MicroRNA function in myeloid biology. Blood. 2011;118(11):2960–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lorenzen JM, Volkmann I, Fiedler J, Schmidt M, Scheffner I, Haller H, et al. Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am J Transplant. 2011;11(10):2221–7.

    Article  CAS  PubMed  Google Scholar 

  50. Jung M, Schaefer A, Steiner I, Kempkensteffen C, Stephan C, Erbersdobler A, et al. Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin Chem. 2010;56(6):998–1006.

    Article  CAS  PubMed  Google Scholar 

  51. Hartono C, Muthukumar T, Suthanthiran M. Noninvasive diagnosis of acute rejection of renal allografts. Curr Opin Organ Transplant. 2010;15(1):35–41.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lorenzen JM, Kaucsar T, Schauerte C, Schmitt R, Rong S, Hubner A, et al. MicroRNA-24 antagonism prevents renal ischemia reperfusion injury. J Am Soc Nephrol. 2014;25(12):2717–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu X, Dong C, Jiang Z, Wu WK, Chan MT, Zhang J, et al. MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11. Exp Cell Res. 2015;333(1):155–63.

    Article  CAS  PubMed  Google Scholar 

  54. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452(7189):896–9.

    Article  CAS  PubMed  Google Scholar 

  55. Denby L, Ramdas V, Lu R, Conway BR, Grant JS, Dickinson B, et al. MicroRNA-214 antagonism protects against renal fibrosis. J Am Soc Nephrol. 2014;25(1):65–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bijkerk R, van Solingen C, de Boer HC, van der Pol PKM, de Bruin RG, van Oeveren-Rietdijk AM, Lievers E, Schlagwein N, van Gijlswijk DJ, Roeten MK, Neshati Z, de Vries AA, Rodijk M, Pike-Overzet K, van den Berg YW, van der Veer EP, Versteeg H, Reinders ME, et al. Hematopoietic microRNA-126 protects against renal ischemia/reperfusion injury by promoting vascular integrity. J Am Soc Nephrol. 2014;25:8.

    Article  Google Scholar 

  57. Borges FT, Melo SA, Ozdemir BC, Kato N, Revuelta I, Miller CA, et al. TGF-beta1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol. 2013;24(3):385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nagalla S, Shaw C, Kong X, Kondkar AA, Edelstein LC, Ma L, et al. Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood. 2011;117(19):5189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. USRD USRDS. 2014 Annual data report: epidemiology of kidney disease in the United States. 2014.

    Google Scholar 

  60. Anglicheau D, Sharma VK, Ding R, Hummel A, Snopkowski C, Dadhania D, et al. MicroRNA expression profiles predictive of human renal allograft status. Proc Natl Acad Sci U S A. 2009;106(13):5330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu XY, Xu J. The role of miR-223 in the acute rejection after kidney transplantation. Chin J Cell Mol Immunol. 2011;27(10):1121–3.

    Article  CAS  Google Scholar 

  62. Ding S, Liang Y, Zhao M, Liang G, Long H, Zhao S, et al. Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum. 2012;64(9):2953–63.

    Article  CAS  PubMed  Google Scholar 

  63. Wilflingseder J, Regele H, Perco P, Kainz A, Soleiman A, Muhlbacher F, et al. miRNA profiling discriminates types of rejection and injury in human renal allografts. Transplantation. 2013;95(6):835–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Scian MJ, Maluf DG, David KG, Archer KJ, Suh JL, Wolen AR, et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am J Transplant. 2011;11(10):2110–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci USA. 2010;107(30):13450–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Betts G, Shankar S, Sherston S, Friend P, Wood KJ. Examination of serum miRNA levels in kidney transplant recipients with acute rejection. Transplantation. 2014;97(4):e28–30.

    Article  PubMed  Google Scholar 

  67. Danger R, Paul C, Giral M, Lavault A, Foucher Y, Degauque N, et al. Expression of miR-142-5p in peripheral blood mononuclear cells from renal transplant patients with chronic antibody-mediated rejection. PLoS One. 2013;8(4):e60702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maluf DG, Dumur CI, Suh JL, Scian MJ, King AL, Cathro H, et al. The urine microRNA profile may help monitor post-transplant renal graft function. Kidney Int. 2014;85(2):439–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oba S, Kumano S, Suzuki E, Nishimatsu H, Takahashi M, Takamori H, et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PloS One. 2010;5(10):e13614.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sui W, Lin H, Peng W, Huang Y, Chen J, Zhang Y, et al. Molecular dysfunctions in acute rejection after renal transplantation revealed by integrated analysis of transcription factor, microRNA and long noncoding RNA. Genomics. 2013;102(4):310–22.

    Article  CAS  PubMed  Google Scholar 

  71. Glowacki F, Savary G, Gnemmi V, Buob D, Van der Hauwaert C, Lo-Guidice JM, et al. Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS One. 2013;8(2):e58014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zell S, Schmitt R, Witting S, Kreipe HH, Hussein K, Becker JU. Hypoxia induces mesenchymal gene expression in renal tubular epithelial cells: an in vitro model of kidney transplant fibrosis. Nephron Extra. 2013;3(1):50–8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sui W, Dai Y, Huang Y, Lan H, Yan Q, Huang H. Microarray analysis of microRNA expression in acute rejection after renal transplantation. Transpl Immunol. 2008;19(1):81–5.

    Article  CAS  PubMed  Google Scholar 

  74. Danger R, Pallier A, Giral M, Martinez-Llordella M, Lozano JJ, Degauque N, et al. Upregulation of miR-142-3p in peripheral blood mononuclear cells of operationally tolerant patients with a renal transplant. J Am Soc Nephrol. 2012;23(4):597–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316(5824):608–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 2007;129(1):147–61.

    Article  CAS  PubMed  Google Scholar 

  77. Sallustio F, Serino G, Costantino V, Curci C, Cox SN, De Palma G, et al. miR-1915 and miR-1225-5p regulate the expression of CD133, PAX2 and TLR2 in adult renal progenitor cells. PloS One. 2013;8(7):e68296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Oberbauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jelencsics, K., Oberbauer, R. (2015). microRNA and Kidney Transplantation. In: Santulli, G. (eds) microRNA: Medical Evidence. Advances in Experimental Medicine and Biology, vol 888. Springer, Cham. https://doi.org/10.1007/978-3-319-22671-2_14

Download citation

Publish with us

Policies and ethics