Skip to main content

microRNAs in Diabetic Kidney Disease

  • Chapter
microRNA: Medical Evidence

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 888))

Abstract

Diabetes and diabetic kidney diseases have continually exerted a great burden on our society. Although the recent advances in medical research have led to a much better understanding of diabetic kidney diseases, there is still no successful strategy for effective treatments for diabetic kidney diseases. Recently, treatment of diabetic kidney diseases relies either on drugs that reduce the progression of renal injury or on renal replacement therapies, such as dialysis and kidney transplantation. On the other hand, searching for biomarkers for early diagnosis and effective therapy is also urgent. Discovery of microRNAs has opened to a novel field for posttranscriptional regulation of gene expression. Results from cell culture experiments, experimental animal models, and patients under diabetic conditions reveal the critical role of microRNAs during the progression of diabetic kidney diseases. Functional studies demonstrate not only the capability of microRNAs to regulate expression of target genes, but also their therapeutic potential to diabetic kidney diseases. The existence of microRNAs in plasma, serum, and urine suggests their possibility to be biomarkers in diabetic kidney diseases. Thus, identification of the functional role of microRNAs provides an essentially clinical impact in terms of prevention and treatment of progression in diabetic kidney diseases as it enables us to develop novel, specific therapies and diagnostic tools for diabetic kidney diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Federation ID. IDF diabetes atlas. Brussels: IDF; 2013.

    Google Scholar 

  2. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  3. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–88.

    Article  CAS  PubMed  Google Scholar 

  4. Fioretto P, Caramori ML, Mauer M. The kidney in diabetes: dynamic pathways of injury and repair. The Camillo Golgi lecture 2007. Diabetologia. 2008;51(8):1347–55.

    Article  CAS  PubMed  Google Scholar 

  5. Hasslacher C, Ritz E, Wahl P, Michael C. Similar risks of nephropathy in patients with type I or type II diabetes mellitus. Nephrol Dial Transplant. 1989;4(10):859–63.

    CAS  PubMed  Google Scholar 

  6. Miner JH. Renal basement membrane components. Kidney Int. 1999;56(6):2016–24.

    Article  CAS  PubMed  Google Scholar 

  7. Kanwar YS, Sun L, Xie P, Liu FY, Chen SA. Glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol. 2011;6(1):395–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med. 1993;329(20):1456–62.

    Article  CAS  PubMed  Google Scholar 

  9. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving H-H, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    Article  CAS  PubMed  Google Scholar 

  10. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    Article  CAS  PubMed  Google Scholar 

  11. Retinopathy E. Nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The diabetes control and complications trial/epidemiology of diabetes interventions and complications research group. [Erratum appears in N Engl J Med 2000 May 4; 342 (18): 1376]. N Engl J Med. 2000;342(6):381–90.

    Article  Google Scholar 

  12. Ziyadeh FN, Sharma K. Overview: combating diabetic nephropathy. J Am Soc Nephrol. 2003;14(5):1355–7.

    Article  PubMed  Google Scholar 

  13. Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med. 1999;341(15):1127–33.

    Article  CAS  PubMed  Google Scholar 

  14. Blumenthal SS. Evolution of treatment for diabetic nephropathy: historical progression from RAAS inhibition and onward. Postgrad Med. 2011;123(6):166–79.

    Article  PubMed  Google Scholar 

  15. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  16. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62.

    Article  CAS  PubMed  Google Scholar 

  17. Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci. 2006;103(33):12481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.

    Article  CAS  PubMed  Google Scholar 

  19. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, MacDonald PE, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226–30.

    Article  CAS  PubMed  Google Scholar 

  20. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  CAS  PubMed  Google Scholar 

  21. Janssen HLA, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94.

    Article  CAS  PubMed  Google Scholar 

  22. Chang T-C, Mendell JT. MicroRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet. 2007;8:215–39.

    Article  CAS  PubMed  Google Scholar 

  23. Chen C. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 2005;353(17):1768.

    Article  CAS  PubMed  Google Scholar 

  24. Hennessy E, O’Driscoll L. Molecular medicine of microRNAs: structure, function and implications for diabetes. Expert Rev Mol Med. 2008;10:e24.

    Article  PubMed  Google Scholar 

  25. Saal S, Harvey SJ. MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hypertens. 2009;18(4):317–23.

    Article  CAS  PubMed  Google Scholar 

  26. Kato M, Natarajan R. MicroRNA cascade in diabetic kidney disease: big impact initiated by a small RNA. Cell Cycle. 2009;8(22):3613–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kato M, Arce L, Natarajan R. MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol. 2009;4(7):1255–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaucsár T, Rácz Z, Hamar P. Post-transcriptional gene-expression regulation by micro RNA (miRNA) network in renal disease. Adv Drug Deliv Rev. 2010;62(14):1390–401.

    Article  PubMed  CAS  Google Scholar 

  29. Li JY, Yong TY, Michael MZ, Gleadle JM. Review: the role of microRNAs in kidney disease. Nephrology (Carlton). 2010;15(6):599–608.

    Article  CAS  Google Scholar 

  30. Akkina S, Becker BN. MicroRNAs in kidney function and disease. Transl Res. 2011;157(4):236–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lorenzen JM, Haller H, Thum T. MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nat Rev Nephrol. 2011;7(5):286–94.

    Article  CAS  PubMed  Google Scholar 

  32. Bhatt K, Mi Q-S, Dong Z. MicroRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am J Physiol Renal Physiol. 2011;300(3):F602–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ho J, Kreidberg JA. The long and short of microRNAs in the kidney. J Am Soc Nephrol. 2012;23(3):400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kantharidis P, Wang B, Carew RM, Lan HY. Diabetes complications: the microRNA perspective. Diabetes. 2011;60(7):1832–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kato M, Park JT, Natarajan R. MicroRNAs and the glomerulus. Exp Cell Res. 2012;318(9):993–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karthikeyan Chandrasekaran DSK, Sepramaniam S, Armugam A, Wintour EM, Bertram JF, Jeyaseelan K. Role of microRNAs in kidney homeostasis and disease. Kidney Int. 2012;81(7):617–27.

    Article  PubMed  CAS  Google Scholar 

  37. Pandey AK, Agarwal P, Kaur K, Datta M. MicroRNAs in diabetes: tiny players in big disease. Cell Physiol Biochem. 2009;23(4–6):221–32.

    Article  CAS  PubMed  Google Scholar 

  38. Ma L, Qu L. The function of microRNAs in renal development and pathophysiology. J Genet Genomics. 2013;40(4):143–52.

    Article  PubMed  CAS  Google Scholar 

  39. Ho J, Kreidberg JA. MicroRNAs in renal development. Pediatr Nephrol. 2013;28(2):219–25.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chung AC, Yu X, Lan HY. MicroRNA and nephropathy: emerging concepts. Int J Nephrol Renovascu Dis. 2013;6:169–79.

    CAS  Google Scholar 

  41. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123(4):631.

    Article  CAS  PubMed  Google Scholar 

  43. MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA. In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci. 2008;105(2):512–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robb GB, Rana TM. RNA helicase A interacts with RISC in human cells and functions in RISC loading. Mol Cell. 2007;26(4):523–37.

    Article  CAS  PubMed  Google Scholar 

  45. Vallon V, Komers R. Pathophysiology of the diabetic kidney. Compr Physiol. 2011;1(3):1175–232.

    PubMed  Google Scholar 

  46. Harvey SJ, Jarad G, Cunningham J, Goldberg S, Schermer B, Harfe BD, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol. 2008;19(11):2150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol. 2008;19(11):2069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi S, Yu L, Chiu C, Sun Y, Chen J, Khitrov G, et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol. 2008;19(11):2159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci. 2007;104(9):3432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Long J, Wang Y, Wang W, Chang BH, Danesh FR. MicroRNA-29c is a signature microRNA under high glucose conditions that targets sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem. 2011;286(13):11837–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mu J, Pang Q, Guo Y-H, Chen J-G, Zeng W, Huang Y-J, et al. Functional implications of microRNA-215 in TGF-β1-induced phenotypic transition of mesangial cells by targeting CTNNBIP1. PLoS One. 2013;8(3):e58622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Karolina DS, Armugam A, Tavintharan S, Wong MT, Lim SC, Sum CF, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One. 2011;6(8):e22839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kato M, Arce L, Wang M, Putta S, Lanting L, Natarajan R. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int. 2011;80(4):358–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang Q, Wang Y, Minto AW, Wang J, Shi Q, Li X, et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. 2008;22(12):4126–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chung AC, Dong Y, Yang W, Zhong X, Li R, Lan HY. Smad7 suppresses renal fibrosis via altering expression of TGF-beta/Smad3-regulated microRNAs. Mol Ther. 2013;21(2):388–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chung AC, Huang XR, Meng X, Lan HY. miR-192 mediates TGF-β/Smad3-driven renal fibrosis. J Am Soc Nephrol. 2010;21(8):1317–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol. 2009;11(7):881–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kato M, Wang L, Putta S, Wang M, Yuan H, Sun G, et al. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-β-induced collagen expression in kidney cells. J Biol Chem. 2010;285(44):34004–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Deshpande SD, Putta S, Wang M, Lai JY, Bitzer M, Nelson RG, et al. Transforming growth factor-beta induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes. 2013;62(9):3151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol. 2012;23(3):458–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D. Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol. 2010;21(3):438–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang B, Herman-Edelstein M, Koh P, Burns W, Jandeleit-Dahm K, Watson A, et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-β. Diabetes. 2010;59(7):1794–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dey N, Das F, Mariappan MM, Mandal CC, Ghosh-Choudhury N, Kasinath BS, et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J Biol Chem. 2011;286(29):25586–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhong X, Chung A, Chen H, Dong Y, Meng X, Li R, et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia. 2013;56(3):663–74.

    Article  CAS  PubMed  Google Scholar 

  65. Wang J, Gao Y, Ma M, Li M, Zou D, Yang J, et al. Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem Biophys. 2013;67(2):537–46.

    Article  CAS  PubMed  Google Scholar 

  66. Zhong X, Chung ACK, Chen H-Y, Meng X-M, Lan HY. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol. 2011;22(9):1668–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fiorentino L, Cavalera M, Mavilio M, Conserva F, Menghini R, Gesualdo L, et al. Regulation of TIMP3 in diabetic nephropathy: a role for microRNAs. Acta Diabetol. 2013;50(6):965–9.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang Z, Peng H, Chen J, Chen X, Han F, Xu X, et al. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett. 2009;583(12):2009–14.

    Article  CAS  PubMed  Google Scholar 

  69. Meng XM, Chung AC, Lan HY. Role of the TGF-beta/BMP-7/Smad pathways in renal diseases. Clin Sci. 2013;124(4):243–54.

    Article  CAS  PubMed  Google Scholar 

  70. Lan HY, Chung AC. TGF-beta/Smad signaling in kidney disease. Semin Nephrol. 2012;32(3):236–43.

    Article  CAS  PubMed  Google Scholar 

  71. Ding Q, Gladson CL, Wu H, Hayasaka H, Olman MA. Focal adhesion kinase (FAK)-related non-kinase inhibits myofibroblast differentiation through differential MAPK activation in a FAK-dependent manner. J Biol Chem. 2008;283(40):26839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 2009;82(1):21–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980–4.

    Article  CAS  PubMed  Google Scholar 

  74. Kriegel AJ, Liu Y, Fang Y, Ding X, Liang M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics. 2012;44(4):237–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Qin W, Chung ACK, Huang XR, Meng X-M, Hui DSC, Yu C-M, et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol. 2011;22(8):1462–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105(35):13027–32.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Xiao J, Meng XM, Huang XR, Chung AC, Feng YL, Hui DS, et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther. 2012;20(6):1251–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Du B, Ma L-M, Huang M-B, Zhou H, Huang H-L, Shao P, et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett. 2010;584(4):811–6.

    Article  CAS  PubMed  Google Scholar 

  79. Wang B, Komers R, Carew R, Winbanks CE, Xu B, Herman-Edelstein M, et al. Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol. 2012;23(2):252–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Du T, Zamore PD. MicroPrimer: the biogenesis and function of microRNA. Development. 2005;132(21):4645–52.

    Article  CAS  PubMed  Google Scholar 

  81. Liu Y, Taylor NE, Lu L, Usa K, Cowley Jr AW, Ferreri NR, et al. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension. 2010;55(4):974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res. 2010;87(3):535–44.

    Article  CAS  PubMed  Google Scholar 

  83. Cushing L, Kuang PP, Qian J, Shao F, Wu J, Little F, et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol. 2011;45(2):287–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Howe EN, Cochrane DR, Richer JK. The miR-200 and miR-221/222 microRNA families: opposing effects on epithelial identity. J Mammary Gland Biol Neoplasia. 2012;17(1):65–77.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.

    Article  CAS  PubMed  Google Scholar 

  86. Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283(22):14910–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9(6):582–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, et al. miR-200a prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes. 2011;60(1):280–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xiong M, Jiang L, Zhou Y, Qiu W, Fang L, Tan R, et al. The miR-200 family regulates TGF-beta1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol. 2012;302(3):F369–79.

    Article  CAS  PubMed  Google Scholar 

  91. Park JT, Kato M, Yuan H, Castro N, Lanting L, Wang M, et al. FOG2 protein down-regulation by transforming growth factor-beta1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy. J Biol Chem. 2013;288(31):22469–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shi S, Yu L, Zhang T, Qi H, Xavier S, Ju W, et al. Smad2-dependent downregulation of miR-30 is required for TGF-beta-induced apoptosis in podocytes. PLoS One. 2013;8(9):e75572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vogelmann SU, Nelson WJ, Myers BD, Lemley KV. Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Renal Physiol. 2003;285(1):F40–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li D, Lu Z, Jia J, Zheng Z, Lin S. MiR-124 is related to podocytic adhesive capacity damage in STZ-induced uninephrectomized diabetic rats. Kidney Blood Press Res. 2013;37(4–5):422–31.

    Article  CAS  PubMed  Google Scholar 

  95. Fu Y, Zhang Y, Wang Z, Wang L, Wei X, Zhang B, et al. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Am J Nephrol. 2010;32(6):581–9.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang Z, Luo X, Ding S, Chen J, Chen T, Chen X, et al. MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy. FEBS Lett. 2012;586(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  97. Long J, Wang Y, Wang W, Chang BH, Danesh FR. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem. 2010;285(30):23457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen YQ, Wang XX, Yao XM, Zhang DL, Yang XF, Tian SF, et al. MicroRNA-195 promotes apoptosis in mouse podocytes via enhanced caspase activity driven by BCL2 insufficiency. Am J Nephrol. 2011;34(6):549–59.

    Article  CAS  PubMed  Google Scholar 

  99. Chen YQ, Wang XX, Yao XM, Zhang DL, Yang XF, Tian SF, et al. Abated microRNA-195 expression protected mesangial cells from apoptosis in early diabetic renal injury in mice. J Nephrol. 2012;25(4):566–76.

    Article  CAS  PubMed  Google Scholar 

  100. Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454(7200):56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li R, Chung AC, Dong Y, Yang W, Zhong X, Lan HY. The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-beta/Smad3-Azin1 pathway. Kidney Int. 2013;84(6):1129–44.

    Article  CAS  PubMed  Google Scholar 

  102. Zhou Q, Chung AC, Huang XR, Dong Y, Yu X, Lan HY. Identification of novel long noncoding RNAs associated with TGF-beta/Smad3-mediated renal inflammation and fibrosis by RNA sequencing. Am J Pathol. 2014;184(2):409–17.

    Article  CAS  PubMed  Google Scholar 

  103. Lan HY, Chung AC. Transforming growth factor-beta and Smads. Contrib Nephrol. 2011;170:75–82.

    Article  CAS  PubMed  Google Scholar 

  104. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A. 2007;104(9):3432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    Article  CAS  PubMed  Google Scholar 

  107. Volinia S, Visone R, Galasso M, Rossi E, Croce CM. Identification of microRNA activity by targets’ reverse eXpression. Bioinformatics. 2010;26(1):91–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res. 2012;93(4):555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Argyropoulos C, Wang K, McClarty S, Huang D, Bernardo J, Ellis D, et al. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS One. 2013;8(1):e54662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Barutta F, Tricarico M, Corbelli A, Annaratone L, Pinach S, Grimaldi S, et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One. 2013;8(11):e73798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (General Program 81170681 and 21477101); the Research Grant Council of Hong Kong (RGC GRF 463612, 464010, 763908, 764109, and 14104314); Faculty Research Grant from the Hong Kong Baptist University (30-13-170FRG1/13-14/070); R&D funding of basic research, Shenzhen (General Program JC201105201059A), and national and provincial funding from Shenzhen City (GJHS20120702105523297). The author declared no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur C. K. Chung Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chung, A.C.K. (2015). microRNAs in Diabetic Kidney Disease. In: Santulli, G. (eds) microRNA: Medical Evidence. Advances in Experimental Medicine and Biology, vol 888. Springer, Cham. https://doi.org/10.1007/978-3-319-22671-2_13

Download citation

Publish with us

Policies and ethics