Skip to main content
  • 3992 Accesses

Abstract

Let us begin the process of trying to recover the values of an attenuation-coefficient function f(x, y) from the values of its Radon transform \(\,\mathcal{R}f\,\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Axler, S.: Linear Algebra Done Right, 3rd edn. Springer, New York (2015)

    MATH  Google Scholar 

  2. Bartle, R.G.: The Elements of Real Analysis, 2nd edn. Wiley, New York (1976)

    MATH  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bloch, F., Hansen, W.W., Packard, M.: Nuclear induction. Phys. Rev. 69, 127 (1946)

    Article  Google Scholar 

  5. Blümich, B.: NMR Imaging of Materials. Oxford University Press, Oxford (2000)

    Google Scholar 

  6. Bracewell, R.N.: Image reconstruction in radio astronomy. In: Herman, G.T. (ed.) Image Reconstruction from Projections: Implementation and Applications. Topics in Applied Physics, vol. 32. Springer, Berlin (1979)

    Chapter  Google Scholar 

  7. Bracewell, R.N.: The Fourier Transform and Its Applications, 3rd edn. McGraw-Hill, Boston (2000)

    Google Scholar 

  8. Bracewell, R.N., Riddle, A.C.: Inversion of fan-beam scans in radio astronomy. Astrophys. J. 150, 427–434 (1967)

    Article  Google Scholar 

  9. Butz, T.: Fourier Transformation for Pedestrians. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM Rev. 23, 444–464 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. Censor, Y.: Finite series-expansion reconstruction methods. Proc. IEEE 71, 409–419 (1983)

    Article  Google Scholar 

  12. Cierniak, R.: X-Ray Computed Tomography in Biomedical Engineering. Springer, New York (2011)

    Book  Google Scholar 

  13. Cooley, T.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cormack, A.M.: Representation of a function by its line integrals, with some radiological applications I, II. J. Appl. Phys. 34, 2722–2727 (1963); 35, 2908–2912 (1964)

    Google Scholar 

  15. Deans, S.R.: The Radon Transform and Some of Its Applications. Krieger, Malabar (1993); reprinted by Dover, Mineola (2007)

    Google Scholar 

  16. Dewdney, A.K.: How to resurrect a cat from its grin, in Mathematical Recreations. Sci. Am. 263(3), 174–177 (1990). Note: In the first edition, I incorrectly ascribed this to Martin Gardner. My thanks go to Y. Le Du, from France, for being a devoted Martin Gardner fan and pointing out to me that Gardner was no longer writing his Mathematical Games column for Scientific American in 1990

    Google Scholar 

  17. Epstein, C.L.: Introduction to the Mathematics of Medical Imaging, 2nd edn. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  18. Feeman, T.G.: Conformality, the exponential function, and world map projections. Coll. Math. J. 32, 334–342 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Feeman, T.G.: On a family of circles. Primus 21, 193–196 (2011)

    Article  Google Scholar 

  20. Freeman, R.: Magnetic Resonance in Chemistry and Medicine. Oxford University Press, Oxford (2003)

    Google Scholar 

  21. Gadian, D.G.: Nuclear Magnetic Resonance and Its Applications to Living Systems. Oxford University Press, Oxford (1982)

    Google Scholar 

  22. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29, 471–481 (1970)

    Article  Google Scholar 

  23. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  24. Helgason, S.: The Radon Transform, 2nd edn. Birkhäuser, Boston (1999)

    Book  MATH  Google Scholar 

  25. Herman, G.T., Lent, A., Rowland, S.W.: ART: mathematics and applications. J. Theor. Biol. 42, 1–32 (1973)

    Article  Google Scholar 

  26. Hinshaw, W.S., Lent, A.H.: An introduction to NMR imaging: from the Bloch equation to the imaging equation. Proc. IEEE 71, 338–350 (1983)

    Article  Google Scholar 

  27. Hounsfield, G.N.: Computerized transverse axial scanning tomography. Br. J. Radiol. 46, 1016–1022 (1973)

    Article  Google Scholar 

  28. Hounsfield, G.N.: A method of and apparatus for examination of a body by radiation such as X or gamma radiation. The Patent Office, London (1972). Patent Specification 1283915

    Google Scholar 

  29. Kalman, D.: A singularly valuable decomposition: the SVD of a matrix. Coll. Math. J. 27, 2–23 (1996)

    Article  MathSciNet  Google Scholar 

  30. Knoll, G.F.: Single-photon emission computed tomography. Proc. IEEE 71, 320–329 (1983)

    Article  Google Scholar 

  31. Körner, T.W.: Fourier Analysis. Cambridge University Press, Cambridge (1988)

    Book  MATH  Google Scholar 

  32. Kuchment, P.: The Radon Transform and Medical Imaging. CBMS, vol. 85. SIAM, Philadelphia (2014)

    Google Scholar 

  33. Kuperman, V.: Magnetic Resonance Imaging: Physical Principles and Applications. Academic Press, San Diego (2000)

    Google Scholar 

  34. Lauterbur, P.C.: Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190 (1973)

    Article  Google Scholar 

  35. Lewitt, R.M.: Reconstruction algorithms: transform methods. Proc. IEEE 71, 390–408 (1983)

    Article  Google Scholar 

  36. Louis, A.K.: Nonuniqueness in inverse Radon problems: the frequency distribution of the ghosts. Math. Z. 185, 429–440 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  37. Louis, A.K.: Approximate inverse for linear and some nonlinear problems. Inverse Prob. 12, 175–190 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Mansfield, P.: Multi-planar image formation using NMR spin echoes. J. Phys. C. 10, L55 (1977)

    Article  Google Scholar 

  39. Natterer, F.: The Mathematics of Computerized Tomography. Classics in Applied Mathematics, vol. 32. SIAM, Philadelphia (2001)

    Google Scholar 

  40. Noble, B., Daniel, J.W.: Applied Linear Algebra, 3rd edn. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  41. Purcell, E.M., Torrey, H.C., Pound, R.V.: Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37 (1946)

    Article  Google Scholar 

  42. R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2014).http://www.R-project.org

  43. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisserMannigfaltigkeiten. Berichte Sächsische Akademie der Wissenschaften 69, 262–277 (1917)

    Google Scholar 

  44. Ramachandran, G.N., Lakshminarayanan, A.V.: Three-dimensional reconstruction from radiographs and electron micrographs II: application of convolutions instead of Fourier transforms. Proc. Natl. Acad. Sci. USA 68, 2236–2240 (1971)

    Article  MathSciNet  Google Scholar 

  45. Rowland, S.W.: Computer implementation of image reconstruction formulas. In: Herman, G.T. (ed.) Image Reconstruction from Projections: Implementation and Applications. Topics in Applied Physics, vol. 32. Springer, Berlin (1979)

    Chapter  Google Scholar 

  46. Rudin, W.: Real and Complex Analysis, 2nd edn. McGraw-Hill, New York (1974)

    MATH  Google Scholar 

  47. Seeley, R.: An Introduction to Fourier Series and Integrals. W.A. Benjamin, New York (1966)

    MATH  Google Scholar 

  48. Shepp, L.A., Kruskal, J.B.: Computerized tomography: the new medical X-ray technology. Am. Math. Mon. 34, 35–44 (1978)

    MathSciNet  Google Scholar 

  49. Shepp, L.A., Logan, B.F.: The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. NS-21, 21–43 (1974)

    Article  Google Scholar 

  50. Strang, G.: The Fundamental Theorem of Linear Algebra. Am. Math. Mon. 100, 848–855 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  51. Trefethen, L.N., Bau, D. III: Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  52. Wang, L.: Cross-section reconstruction with a fan-beam scanning geometry. IEEE Trans. Comput. C-26, 264–268 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

3.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Feeman2E_Rcode (4 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feeman, T.G. (2015). Back Projection. In: The Mathematics of Medical Imaging. Springer Undergraduate Texts in Mathematics and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-22665-1_3

Download citation

Publish with us

Policies and ethics