Skip to main content

High-Radix Arithmetic-Logic Unit (ALU) Based on Memristors

  • Chapter
  • First Online:

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 19))

Abstract

This chapter presents a novel method for implementing crossbar-based multi-level memories, where each cross-point cell stores multiple bits. Furthermore, a conceptual solution for novel CMOS-compatible, memristive, high-radix arithmetic logic units (ALUs) is proposed, for future computing systems. More specifically, a hybrid ALU circuit nano-architecture is described, where: (a) CMOS peripheral circuits are used for binary arithmetic operations; (b) a memristive reconfigurable crossbar-based memory block is used to: (i) allow parallel read/write of data; (ii) facilitate the implementation of efficient arithmetic algorithms (e.g. fast partial product creation for multiplication); and (iii) store information in a compact, high-radix form. Instead of single memristors, the crossbar nodes comprise a type of multi-state composite memristive switches, described in Chap. 3, which permit multi-bit storage in a more robust manner. Radix-4 representation is used because: (i) it balances the offered advantages with the peripheral binary conversion circuitry overhead; and (ii) it provides a good density/reliability trade-off. The fine operation and accuracy of the proposed system architecture is demonstrated through SPICE-level simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.P. Brent, P. Zimmermann, Modern Computer Arithmetic (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  2. International Technology Roadmap for Semiconductors (ITRS) (2013). Available: http://www.itrs.net/. Accessed June 2014

  3. S. Hamdioui, H. Aziza, G.C. Sirakoulis, “Memristor Based Memories: Technology, Design and Test, in 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Santorini island, Greece (2014)

    Google Scholar 

  4. Y. Pershin, M. Di Ventra, Practical approach to programmable analog circuits with memristors. IEEE Trans. Circ. Syst. I, Reg. Papers 57(8), 1857–1864 (2010)

    Article  MathSciNet  Google Scholar 

  5. E. Lehtonen, M. Laiho, Stateful implication logic with memristors, in IEEE/ACM International Symposium on. Nanoscale Architectures (NANOARCH), San Francisco, CA (2009)

    Google Scholar 

  6. S. Kvatinsky, G. Satat, N. Wald, E.G. Friedman, A. Kolodny, U.C. Weiser, Memristor-based material implication (IMPLY) logic: design principles and methodologies, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(10), 2054–2066 (2014)

    Google Scholar 

  7. S. Paul, S. Bhunia, A scalable memory-based reconfigurable computing framework for nanoscale crossbar. IEEE Trans. Nanotechnol. 11(3), 451–462 (2012)

    Article  Google Scholar 

  8. G.S. Rose, J. Rajendran, H. Manem, R. Karri, R.E. Pino, Leveraging memristive systems in the construction of digital logic circuits. IEEE Proc. 100(6), 2033–2049 (2012)

    Article  Google Scholar 

  9. G. Papandroulidakis, I. Vourkas, N. Vasileiadis, G.C. Sirakoulis, Boolean logic operations and computing circuits based on memristors. IEEE Trans. Circuits Syst. II Expr. Briefs 61(12), 972–976 (2014)

    Article  Google Scholar 

  10. R. Patel, E.G. Friedman, Arithmetic encoding for memristive multi-bit storage, in 20th IEEE/IFIP International Conference on VLSI and System-on-Chip (VLSI-SoC), Santa Cruz, CA (2012)

    Google Scholar 

  11. L. Yang, Architectures for memristor-based storage structures (2011). Available: http://dukespace.lib.duke.edu/dspace/handle/10161/5013. Accessed 1 Mar 2015

  12. L.O. Chua, The fourth element. IEEE Proc. 100(6), 1920–1927 (2012)

    Article  Google Scholar 

  13. C.E. Merkel, N. Nagpal, S. Mandalapu, D. Kudithipudi, Reconfigurable N-level memristor memory design, in International Joint Conference on Neural Networks (IJCNN), San Jose, CA (2011)

    Google Scholar 

  14. K. Hyongsuk, M.P. Sah, C. Yang, L.O. Chua, Memristor-based multilevel memory, in 12th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), Berkeley, CA (2010)

    Google Scholar 

  15. H. Manem, J. Rajendran, G.S. Rose, Design considerations for multilevel CMOS/Nano memristive memory. ACM J. Emerg. Technol. Comput. Syst. 8(16), 1–22 (2012)

    Article  Google Scholar 

  16. A. Emara, M. Ghoneima, M. El-Dessouky, Differential 1T2M memristor memory cell for single/multi-bit RRAM modules, in 6th Computer Science and Electronic Engineering Conference (CEEC), Colchester (2014)

    Google Scholar 

  17. D. Fey, Using the multi-bit feature of memristors for register files in signed-digit arithmetic units. Semicond. Sci. Technol. 29, 104008 (2014)

    Article  Google Scholar 

  18. Y.V. Pershin, M. Di Ventra, Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145–227 (2011)

    Article  Google Scholar 

  19. E. Linn, R. Rosezin, S. Tappertzhofen, U. Bottger, R. Waser, Beyond von Neumann-logic operations in passive crossbar arrays alongside memory operations, Nanotechnology 23, 305205 (2012)

    Google Scholar 

  20. M. Di Ventra, Y.V. Pershin, The parallel approach. Nat. Phys. 9, 200–202 (2013)

    Article  Google Scholar 

  21. K.H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, W. Lu, A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2012)

    Article  Google Scholar 

  22. H. Kim, M.P. Sah, C. Yang, T. Roska, L.O. Chua, Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans. Circ. Syst. I Reg. Papers 59(1), 148–158 (2012)

    Article  MathSciNet  Google Scholar 

  23. C. Yakopcic, R. Hasan, T.M. Taha, M. McLean, D. Palmer, Memristor-based neuron circuit and method for applying learning algorithm in SPICE?, IET Electron. Lett. 50(7), 492–494 (2014)

    Google Scholar 

  24. H. Manem, G.S. Rose, X. He, W. Wang, Design considerations for variation tolerant multilevel CMOS/nano memristor memory, in 20th Great Lakes Symposium on VLSI (GLSVLSI), Providence, Rhode Island (2010)

    Google Scholar 

  25. P. Junsangsri, F. Lombardi, A memristor-based TCAM (ternary content addressable memory) cell: design and evaluation, in Proceedings of the Great Lakes Symposium on VLSI (GLSVLSI), Salt Lake City, Utah, USA (2012)

    Google Scholar 

  26. I. Vourkas, G.C. Sirakoulis, On the analog computational characteristics of memristive networks, in 20th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Abu Dhabi (2013)

    Google Scholar 

  27. I. Vourkas, G.C. Sirakoulis, On the generalization of composite memristive network structures for computational analog/digital circuits and systems. Microelectron. J. 45(11), 1380–1391 (2014)

    Article  Google Scholar 

  28. I. Vourkas, A. Batsos, G.C. Sirakoulis, SPICE modeling of nonlinear memristive behavior, Int. J. Circ. Theor. Appl. 43(5), 553–565(2015)

    Google Scholar 

  29. Y. Yilmaz, P. Mazumder, Threshold read method for multi-bit memristive crossbar memory, in Int. Symposium on Electronic System Design (ISED), Kochi, Kerala (2011)

    Google Scholar 

  30. K. Cho, S.J. Lee, K. Eshraghian, Memristor-CMOS logic and digital computational components. Microelectron. J. 46(3), 214–220 (2015)

    Article  Google Scholar 

  31. A.A. El-Slehdar, A.H. Fouad, A.G. Radwan, Memristor-based redundant binary adder, in International Conference on Engineering and Technology (ICET), Cairo (2014)

    Google Scholar 

  32. A.A. El-Slehdar, A.H. Fouad, A.G. Radwan, Memristor-based balanced ternary adder, in 25th International Conference on Microelectronics (ICM), Beirut (2013)

    Google Scholar 

  33. A.A. El-Slehdar, A.H. Fouad, A.G. Radwan, Memristor based N-bits redundant binary adder. Microelectron. J. 46(3), 207–213 (2015)

    Article  Google Scholar 

  34. M. Laiho, E. Lehtonen, Arithmetic operations within memristor-based analog memory, in 12th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), Berkeley, CA (2010)

    Google Scholar 

  35. K. Bickerstaff, E.E. Swartzlander, Memristor-based arithmetic, in 44th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA (2010)

    Google Scholar 

  36. F. Merrikh-Bayat, S. Bagheri Shouraki, Memristor-based circuits for performing basic arithmetic operations, in Procedia Computer Science—Proceedings of 2010 World Conference on Information Technology (WCIT), vol. 3 (2011), pp. 128–132

    Google Scholar 

  37. A.H. Shaltoot, A.H. Madian, Memristor based carry lookahead adder architectures, in 55th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Boise, ID (2012)

    Google Scholar 

  38. Y. Yang, J. Mathew, D.K. Pradhan, M. Ottavi, S. Pontarelli, Complementary resistive switch based stateful logic operations using material implication, in Design, Automation and Test in Europe Conference and Exhibition (DATE), Dresden (2014)

    Google Scholar 

  39. S.J. Lee, B.S. Park, S.W. Cho, K. Cho, K. Eshraghian, Memristor-CMOS reconfigurable multiplier architecture, in 14th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA), Notre Dame, IN (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Vourkas .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vourkas, I., Sirakoulis, G.C. (2016). High-Radix Arithmetic-Logic Unit (ALU) Based on Memristors. In: Memristor-Based Nanoelectronic Computing Circuits and Architectures. Emergence, Complexity and Computation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-22647-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22647-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22646-0

  • Online ISBN: 978-3-319-22647-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics