Advertisement

The Future of Glass-ionomers

  • Joshua J. CheethamEmail author

Abstract

As the use and acceptance of glass-ionomer cement (GIC) increase, the scientific community will endeavour to improve current limitations due to their relatively low physical properties compared to other materials. This chapter discusses a range of future improvements in glass-ionomer cements which will increase their longevity and allow them to be used in place of other materials such as the widely used amalgam.

To improve their material properties, many paths can be investigated. New glass filler systems, including a variety of additions, modifications and pre-reacted GIC filler particles, and their effect on physical properties are detailed in this chapter. Other categories of filler particles, including spherical particles, glass fibre reinforcement and nanoparticle developments, as well as their effect on improving GIC properties such as fracture toughness, wear and other physical and aesthetic properties are documented.

Technologies utilising GIC materials as controlled-release vehicles for different materials are discussed. The importance of new mechanisms, such as self-healing technologies and self-cleaning glass technology, is documented in efforts to improve the longevity of GICs and their physical properties. Novel polymer networks, developed for improvements in strength and other properties, and technologies related to porosity reduction, methods to improve fracture toughness and improvements in adhesion durability are also be provided. Future delivery systems provide the user with an insight of what could be the new delivery systems of GICs. Important avenues for the improvement of GIC wear properties, and improvements in aesthetic properties are discussed.

Other topics focus on the future use of GIC participating in pharmacological approaches to caries reduction and restorative dentistry and include biomineralisation and biopromoting improvements, biofilm alterations, the antimicrobial/bioprotection properties of GICs and the possibility of antibiotic additions.

Keywords

Glass ionomer cement Future Biomineralisation Wear Delivery systems Nanoparticle Controlled-release vehicle Self-healing Fracture toughness 

References

  1. Al-Naimi O, Itota T, Hobson R, Mccabe J. Fluoride release for restorative materials and its effect on biofilm formation in natural saliva. J Mater Sci Mater Med. 2008;19:1243–8.PubMedCrossRefGoogle Scholar
  2. Altunsoy M, Botsali MS, Korkut E, Kucukyilmaz E, Sener Y. Effect of different surface treatments on the shear and microtensile bond strength of resin-modified glass ionomer cement to dentin. Acta Odontol Scand. 2014;72:1–6.Google Scholar
  3. Arbabzadeh-Zavareh F, Gibbs T, Meyers IA, Bouzari M, Mortazavi S, Walsh LJ. Recharge pattern of contemporary glass ionomer restoratives. Cord Conf Proc. 2012;9:139–45.Google Scholar
  4. Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF. Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res. 2012;91:454–9.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bakis C, Bank LC, Brown V, Cosenza E, Davalos J, Lesko J, Machida A, Rizkalla S, Triantafillou T. Fiber-reinforced polymer composites for construction-state-of-the-art review. J Compos Constr. 2002;6:73–87.CrossRefGoogle Scholar
  6. Bala O, Arisu HD, Yikilgan I, Arslan S, Gullu A. Evaluation of surface roughness and hardness of different glass ionomer cements. Eur J Dent. 2012;6:79–86.PubMedCentralPubMedGoogle Scholar
  7. Bate CS. The pathology of dental caries. Odontological Society of Great Britain London: Cox & Wyman; 1864.Google Scholar
  8. Benelli EM, Serra MC, Rodrigues Jr AL, Cury JA. In situ anticariogenic potential of glass ionomer cement. Caries Res. 1993;27:280–4.PubMedCrossRefGoogle Scholar
  9. Blossey R. Self-cleaning surfaces – virtual realities. Nat Mater. 2003;2:301–6.PubMedCrossRefGoogle Scholar
  10. Boehm AJR, Peuker M, Walter A, Broyles BR, Oxman JD, Dubbe JW, Hartung MG, Guggenmos S. Mixer for mixing a dental composition. United States Patent Application 20110189059. 2011.Google Scholar
  11. Burke FJ. Dental materials – what goes where? The current status of glass ionomer as a material for loadbearing restorations in posterior teeth. Dent Update. 2013;40:840–4.PubMedGoogle Scholar
  12. Burke FJ. Reinforced glass-ionomer restorations. Dent Abstr. 2014;59, E79.CrossRefGoogle Scholar
  13. Busscher HJ, Rinastiti M, Siswomihardjo W, Van Der Mei HC. Biofilm formation on dental restorative and implant materials. J Dent Res. 2010;89:657–65.PubMedCrossRefGoogle Scholar
  14. Carlén A, Nikdel K, Wennerberg A, Holmberg K, Olsson J. Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials. 2001;22:481–7.PubMedCrossRefGoogle Scholar
  15. Cheetham JJW. Dental capsule. United States Patent Application 20140305816. 2014.Google Scholar
  16. Cheetham JJ, Palamara JE, Tyas MJ, Burrow MF. A comparison of resin-modified glass-ionomer and resin composite polymerisation shrinkage stress in a wet environment. J Mech Behav Biomed Mater. 2014a;29:33–41.PubMedCrossRefGoogle Scholar
  17. Cheetham JJ, Palamara JEA, Tyas MJ, Burrow MF. Evaluation of the interfacial work of fracture of glass-ionomer cements bonded to dentin. J Mech Behav Biomed Mater. 2014b;29:427–37.PubMedCrossRefGoogle Scholar
  18. Colquhoun H, Klumperman B. Self-healing polymers. Polym Chem. 2013;4:4832–3.CrossRefGoogle Scholar
  19. Culbertson BM. Glass-ionomer dental restoratives. Prog Polym Sci. 2001;26:577–604.CrossRefGoogle Scholar
  20. Dabsie F, Gregoire G, Sixou M, Sharrock P. Does strontium play a role in the cariostatic activity of glass ionomer? Strontium diffusion and antibacterial activity. J Dent. 2009;37:554–9.PubMedCrossRefGoogle Scholar
  21. De Munck J, Mine A, Poitevin A, Van Ende A, Cardoso MV, Van Landuyt KL, Peumans M, Van Meerbeek B. Meta-analytical review of parameters involved in dentin bonding. J Dent Res. 2012;91:351–7.PubMedCrossRefGoogle Scholar
  22. Diem VT, Tyas MJ, Ngo HC, Phuong LH, Khanh ND. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement. Clin Oral Investig. 2014;18:753–9.PubMedCrossRefGoogle Scholar
  23. Dimkov A, Nicholson JW, Gjorgievska E. On the possibility of incorporating antimicrobial components into glass-ionomer cements. Prilozi. 2009;30:219–37.PubMedGoogle Scholar
  24. Dionysopoulos D, Koliniotou-Koumpia E, Helvatzoglou-Antoniades M, Kotsanos N. Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives. Dent Mater J. 2013;32:296–304.PubMedCrossRefGoogle Scholar
  25. El-Askary FS, Nassif MS. The effect of the pre-conditioning step on the shear bond strength of nano-filled resin-modified glass-ionomer to dentin. Eur J Dent. 2011;5:150–6.PubMedCentralPubMedGoogle Scholar
  26. El-Baky RMA, Hussien SM. Comparative antimicrobial activity and durability of different glass ionomer restorative materials with and without chlorohexidine. J Adv Biotech Bioeng. 2013;1:14–21.Google Scholar
  27. Fareed MA, Stamboulis A. Effect of nanoclay dispersion on the properties of a commercial glass ionomer cement. Int J Biomater. 2014a.Google Scholar
  28. Fareed MA, Stamboulis A. Nanoclays reinforced glass ionomer cements: dispersion and interaction of polymer grade (Pg) montmorillonite with poly(acrylic acid). J Mater Sci Mater Med. 2014;25:91–9.PubMedCrossRefGoogle Scholar
  29. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20.PubMedCrossRefGoogle Scholar
  30. Ferracane JL. Resin composite—state of the art. Dent Mater. 2011;27:29–38.PubMedCrossRefGoogle Scholar
  31. Ferreira JM, Pinheiro SL, Sampaio FC, Menezes VA. Use of glass ionomer cement containing antibiotics to seal off infected dentin: a randomized clinical trial. Braz Dent J. 2013;24:68–73.PubMedCrossRefGoogle Scholar
  32. Fischer H. Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C. 2003;23:763–72.CrossRefGoogle Scholar
  33. Forsten L. Fluoride release and uptake by glass-ionomers and related materials and its clinical effect. Biomaterials. 1998;19:503–8.PubMedCrossRefGoogle Scholar
  34. Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol. 2011;90:1847–68.PubMedCrossRefGoogle Scholar
  35. Fukuda R, Yoshida Y, Nakayama Y, Okazaki M, Inoue S, Sano H, Suzuki K, Shintani H, Van Meerbeek B. Bonding efficacy of polyalkenoic acids to hydroxyapatite, enamel and dentin. Biomaterials. 2003;24:1861–7.PubMedCrossRefGoogle Scholar
  36. Garcia SJ. Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur Polym J. 2014;53:118–25.CrossRefGoogle Scholar
  37. Gerdolle DA, Mortier E, Droz D. Microleakage and polymerization shrinkage of various polymer restorative materials. J Dent Child. 2008;75:125–33.Google Scholar
  38. Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60:1307–15.PubMedCrossRefGoogle Scholar
  39. Giray F, Peker S, Durmus B, Kargül B. Microleakage of new glass ionomer restorative materials in permanent teeth. Eur J Paediatr Dent. 2014;15:122–6.PubMedGoogle Scholar
  40. Gu YW, Yap AU, Cheang P, Kumar R. Spheroidization of glass powders for glass ionomer cements. Biomaterials. 2004;25:4029–35.PubMedCrossRefGoogle Scholar
  41. Guan K. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of Tio2/Sio2 films. Surf Coat Technol. 2005;191:155–60.CrossRefGoogle Scholar
  42. Guggenberger R, May R, Stefan K. New trends in glass-ionomer chemistry. Biomaterials. 1998;19:479–83.PubMedCrossRefGoogle Scholar
  43. Guida A, Hill RG, Towler MR, Eramo S. Fluoride release from model glass ionomer cements. J Mater Sci Mater Med. 2002;13:645–9.PubMedCrossRefGoogle Scholar
  44. Hamama HH, Burrow MF, Yiu C. Effect of dentine conditioning on adhesion of resin-modified glass ionomer adhesives. Aust Dent J. 2014;59:193–200.PubMedCrossRefGoogle Scholar
  45. Hammouda IM. Reinforcement of conventional glass-ionomer restorative material with short glass fibers. J Mech Behav Biomed Mater. 2009;2:73–81.PubMedCrossRefGoogle Scholar
  46. Han L, Okiji T. Evaluation of the ions release / incorporation of the prototype S-Prg filler-containing endodontic sealer. Dent Mater J. 2011.Google Scholar
  47. Hatanaka K, Irie M, Tjandrawinata R, Suzuki K. Effect of spherical silica filler addition on immediate interfacial Gap-formation in class V cavity and mechanical properties of resin-modified glass-ionomer cement. Dent Mater J. 2006;25:415–22.PubMedCrossRefGoogle Scholar
  48. Hengtrakool C, Pearson GJ, Wilson M. Interaction between GIC and S. sanguis biofilms: antibacterial properties and changes of surface hardness. J Dent. 2006;34:588–97.PubMedCrossRefGoogle Scholar
  49. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49:1993–2007.CrossRefGoogle Scholar
  50. Hokii Y, Yoshimitsu R, Yamamoto K, Fukushima S, Fusejima F, Kumagai T. Protection of enamel-glass ionomer restorative margins by resin-coatings. Dent Mater. 2014;30 Suppl 1:E107.Google Scholar
  51. Hook ER, Owen OJ, Bellis CA, Holder JA, O’sullivan DJ, Barbour ME. Development of a novel antimicrobial-releasing glass ionomer cement functionalized with chlorhexidine hexametaphosphate nanoparticles. J Nanobiotechnol. 2014;12:3.CrossRefGoogle Scholar
  52. Huo X, Torres V, Elsner O, Pfefferkorn F. Texture analysis of glass ionomers. IADR 89th General Session San Diego, USA, 2011.Google Scholar
  53. Irie M, Nagaoka N, Tamada Y, Maruo Y, Nishigawa G, Minagi S, Finger WJ. Effect of spherical silica additions on marginal gaps and compressive strength of experimental glass-ionomer cements. Am J Dent. 2011;24:310–4.PubMedGoogle Scholar
  54. ISO 2008. ISO 7405:2008 Dentistry-evaluation of biocompatibility of medical devices used in dentistry.Google Scholar
  55. ISO 2009. International Standards Organisation 10993 – biological evaluation of medical devices part 1: evaluation and testing.Google Scholar
  56. Jayabal J, Mahesh R. Current state of topical antimicrobial therapy in management of early childhood caries. ISRN Dent. 2014;2014:5.Google Scholar
  57. Jones FH, Hutton BM, Hadley PC, Eccles AJ, Steele TA, Billington RW, Pearson GJ. Fluoride uptake by glass ionomer cements: − a surface analysis approach. Biomaterials. 2003;24:107–19.PubMedCrossRefGoogle Scholar
  58. Kamijo K, Mukai Y, Tominaga T, Iwaya I, Fujino F, Hirata Y, Teranaka T. Fluoride release and recharge characteristics of denture base resins containing surface pre-reacted glass-ionomer filler. Dent Mater J. 2009;28:227–33.PubMedCrossRefGoogle Scholar
  59. Kawano F, Kon M, Kobayashi M, Miyai K. Reinforcement effect of short glass fibers with Cao–P2o5–Sio2–Al2o3 glass on strength of glass-ionomer cement. J Dent. 2001;29:377–80.PubMedCrossRefGoogle Scholar
  60. Kazunori K, Glenn SK, Masayuki Y, Teruo O, Yasuhisa S. Block copolymer micelles as vehicles for drug delivery. J Control Release. 1993;24:119–32.CrossRefGoogle Scholar
  61. Knight GM. The pharmacological management of caries. Dental Asia, September/October 2007.Google Scholar
  62. Knight GM. The pharmacological management of dentine to protect against plaque microorganism degradation. PhD thesis, University of Adelaide; 2008.Google Scholar
  63. Knight GM, Mcintyre JM, Craig G, Zilm PS, Gully N. Inability to form a biofilm of Streptococcus mutans on silver fluoride-and potassium iodide-treated demineralized dentin. Quin Int. 2009;40:155.Google Scholar
  64. Korkmaz Y, Ozel E, Attar N, Ozge Bicer C. Influence of different conditioning methods on the shear bond strength of novel light-curing nano-ionomer restorative to enamel and dentin. Lasers Med Sci. 2010;25:861–6.PubMedCrossRefGoogle Scholar
  65. Latta M, Gross SM, Mchale WA. Microencapsulated compositions and methods for tissue mineralization. United States Patent Application 8889161. 2014.Google Scholar
  66. Lazaridou D, Belli R, Kramer N, Petschelt A, Lohbauer U. Dental materials for primary dentition: are they suitable for occlusal restorations? A two-body wear study. Eur Arch Paediatr Dent. 2015;16(2):165–72.PubMedCrossRefGoogle Scholar
  67. Lloyd CH, Adamson M. The development of fracture toughness and fracture strength in posterior restorative materials. Dent Mater. 1987;3:225–31.PubMedCrossRefGoogle Scholar
  68. Lohani A, Singh G, Bhattacharya SS, Verma A. Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv. 2014;2014:583612.PubMedCentralPubMedCrossRefGoogle Scholar
  69. Lohbauer U. Dental glass ionomer cements as permanent filling materials?–Properties, limitations and future trends. Materials. 2009;3:76–96.CrossRefGoogle Scholar
  70. Lohbauer U, Walker J, Nikolaenko S, Werner J, Clare A, Petschelt A, Greil P. Reactive fibre reinforced glass ionomer cements. Biomaterials. 2003;24:2901–7.PubMedCrossRefGoogle Scholar
  71. Lohbauer U, Frankenberger R, Clare A, Petschelt A, Greil P. Toughening of dental glass ionomer cements with reactive glass fibres. Biomaterials. 2004;25:5217–25.PubMedCrossRefGoogle Scholar
  72. Mackey TK, Contreras JT, Liang BA. The Minamata convention on mercury: attempting to address the global controversy of dental amalgam use and mercury waste disposal. Sci Total Environ. 2014;472:125–9.PubMedCrossRefGoogle Scholar
  73. Manuja N, Nagpal R, Pandit IK. Dental adhesion: mechanism, techniques and durability. J Clin Pediatr Dent. 2012;36:223–34.PubMedCrossRefGoogle Scholar
  74. Mckinney JE, Antonucci JM, Rupp NW. Wear and microhardness of glass-ionomer cements. J Dent Res. 1987;66:1134–9.PubMedCrossRefGoogle Scholar
  75. Mckinney JE, Antonucci JM, Rupp NW. Wear and microhardness of a silver-sintered glass-ionomer cement. J Dent Res. 1988;67:831–5.PubMedCrossRefGoogle Scholar
  76. Mei ML, Li Q-L, Chu C-H, Lo EC-M, Samaranayake LP. Antibacterial effects of silver diamine fluoride on multi-species cariogenic biofilm on caries. Ann Clin Microbiol Antimicrob. 2013;12:4.PubMedCentralPubMedCrossRefGoogle Scholar
  77. Mitsuhashi A, Hanaoka K, Teranaka T. Fracture toughness of resin-modified glass ionomer restorative materials: effect of powder/liquid ratio and powder particle size reduction on fracture toughness. Dent Mater. 2003;19:747–57.PubMedCrossRefGoogle Scholar
  78. Mohiti-Asli M, Pourdeyhimi B, Loboa EG. Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles. Acta Biomater. 2014;10:2096–104.PubMedCentralPubMedCrossRefGoogle Scholar
  79. Moshaverinia A, Ansari S, Moshaverinia M, Roohpour N, Darr JA, Rehman I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 2008;4:432–40.PubMedCrossRefGoogle Scholar
  80. Moshaverinia A, Brantley WA, Chee WWL, Rohpour N, Ansari S, Zheng F, Heshmati RH, Darr JA, Schricker SR, Rehman IU. Measure of microhardness, fracture toughness and flexural strength of N-vinylcaprolactam (NVC)-containing glass-ionomer dental cements. Dent Mater. 2010;26:1137–43.PubMedCrossRefGoogle Scholar
  81. Moshaverinia A, Roohpour N, Chee WW, Schricker SR. A review of powder modifications in conventional glass-ionomer dental cements. J Mater Chem. 2011;21:1319–28.CrossRefGoogle Scholar
  82. Nicholson JW. Chemistry of glass-ionomer cements: a review. Biomaterials. 1998;19:485–94.PubMedCrossRefGoogle Scholar
  83. Ogledzki M, Perry RD, Kugel G. Translucency of resin modified glass ionomer restoratives. AADR annual meeting, Tampa; 21–24 Mar 2012.Google Scholar
  84. Osorio R, Osorio E, Medina-Castillo AL, Toledano M. Polymer nanocarriers for dentin adhesion. J Dent Res. 2014;93(12):1258–63.Google Scholar
  85. Perdigão J. Dentin bonding – variables related to the clinical situation and the substrate treatment. Dent Mater. 2010;26:E24–37.PubMedCrossRefGoogle Scholar
  86. Peterson AM, Kotthapalli H, Rahmathullah MAM, Palmese GR. Investigation of interpenetrating polymer networks for self-healing applications. Compos Sci Technol. 2012;72:330–6.CrossRefGoogle Scholar
  87. Peumans M, Kanumilli P, De Munck J, Van Landuyt K, Lambrechts P, Van Meerbeek B. Clinical effectiveness of contemporary adhesives: a systematic review of current clinical trials. Dent Mater. 2005;21:864–81.PubMedCrossRefGoogle Scholar
  88. Powis D, Follerås T, Merson S, Wilson A. Materials science improved adhesion of a glass ionomer cement to dentin and enamel. J Dent Res. 1982;61:1416–22.PubMedCrossRefGoogle Scholar
  89. Prabhakar AR, Prahlad D, Kumar SR. Antibacterial activity, fluoride release, and physical properties of an antibiotic-modified glass ionomer cement. Pediatr Dent. 2013;35:411–5.PubMedGoogle Scholar
  90. Priebe M, Fromm KM. One-pot synthesis and catalytic properties of encapsulated silver nanoparticles in silica nanocontainers. Part Part Syst Char. 2014;31(6):645–51.Google Scholar
  91. Qizheng C, Xiangting D, Weili Y, Jinxian W, Huiru W, Xiaofeng Y, Xiaohui Y. New developments of inorganic nanofibers fabricated by electrospinning. Rare Met Mater Eng. 2006;35:1167.Google Scholar
  92. Roche KJ, Stanton KT. Precipitation of biomimetic fluorhydroxyapatite/polyacrylic acid nanostructures. J Cryst Growth. 2015;409:80–8.CrossRefGoogle Scholar
  93. Samadzadeh M, Boura SH, Peikari M, Kasiriha S, Ashrafi A. A review on self-healing coatings based on micro/nanocapsules. Prog Org Coat. 2010;68:159–64.CrossRefGoogle Scholar
  94. Seemann R, Flury S, Pfefferkorn F, Lussi A, Noack MJ. Restorative dentistry and restorative materials over the next 20 years: a Delphi survey. Dent Mater. 2014;30(4):442–8.Google Scholar
  95. Sennou HE, Lebugle AA, Gregoire GL. X-Ray photoelectron spectroscopy study of the dentin-glass ionomer cement interface. Dent Mater. 1999;15:229–37.PubMedCrossRefGoogle Scholar
  96. Seppa L, Forss H, Øgaard B. The effect of fluoride application on fluoride release and the antibacterial action of glass lonomers. J Dent Res. 1993;72:1310–4.PubMedCrossRefGoogle Scholar
  97. Setien VJ, Armstrong SR, Wefel JS. Interfacial fracture toughness between resin-modified glass ionomer and dentin using three different surface treatments. Dent Mater. 2005;21:498–504.PubMedCrossRefGoogle Scholar
  98. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145:83–96.PubMedCrossRefGoogle Scholar
  99. Shimazu K, Ogata K, Karibe H. Caries-preventive effect of fissure sealant containing surface reaction-type pre-reacted glass ionomer filler and bonded by self-etching primer. J Clin Pediatr Dent. 2012;36:343–7.PubMedCrossRefGoogle Scholar
  100. Shiozawa M, Takahashi H, Iwasaki N. Fluoride release and mechanical properties after 1-year water storage of recent restorative glass ionomer cements. Clin Oral Investig. 2013;18:1–8.Google Scholar
  101. Smith DC. Development of glass-ionomer cement systems. Biomaterials. 1998;19:467–78.PubMedCrossRefGoogle Scholar
  102. Steinberg D. Studying plaque biofilms on various dental surfaces. In: An Y, Friedman R, editors. Handbook of bacterial adhesion. Totowa, NJ: Humana Press; 2000.Google Scholar
  103. Suzuki YI-K, Aoyagi S, Kaneko M, Mukasa Y. Vacuum assisted mixer for capsule of dental restoration material. United States Patent Application 6776516. 2004.Google Scholar
  104. Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17:68–81.PubMedCrossRefGoogle Scholar
  105. Tezvergil-Mutluay A, Mutluay M, Seseogullari-Dirihan R, Agee KA, Key WO, Scheffel DL, Breschi L, Mazzoni A, Tjaderhane L, Nishitani Y, Tay FR, Pashley DH. Effect of phosphoric acid on the degradation of human dentin matrix. J Dent Res. 2013;92:87–91.PubMedCentralPubMedCrossRefGoogle Scholar
  106. Tyas MJ. Cariostatic effect of glass ionomer cement: a five-year clinical study. Aust Dent J. 1991;36:236–9.PubMedCrossRefGoogle Scholar
  107. Tyas MJ. Milestones in adhesion: glass-ionomer cements. J Adhes Dent. 2003;5:259–66.PubMedGoogle Scholar
  108. Van Amerongen WE. Dental caries under glass ionomer restorations. J Public Health Dent. 1996;56:150–4; discussion 161–3.PubMedCrossRefGoogle Scholar
  109. Van Duinen RNB, Kleverlaan CJ, De Gee AJ, Werner A, Feilzer AJ. Early and long-term wear of ‘fast-Set’ conventional glass–ionomer cements. Dent Mater. 2005;21:716–20.PubMedCrossRefGoogle Scholar
  110. Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, Van Landuyt K, Lambrechts P, Vanherle G. Adhesion to enamel and dentin: current status and future challenges. Oper Dent. 2003;28:215–35.PubMedGoogle Scholar
  111. Van Meerbeek B, Peumans M, Poitevin A, Mine A, Van Ende A, Neves A, De Munck J. Relationship between bond-strength tests and clinical outcomes. Dent Mater. 2010;26:E100–21.PubMedCrossRefGoogle Scholar
  112. Walls A. Glass polyalkenoate (glass-ionomer) cements: a review. J Dent. 1986;14:231–46.PubMedCrossRefGoogle Scholar
  113. Weng Y. Advanced antibacterial glass ionomer cements for improved dental restoratives. PhD 3481168, Purdue University; 2011.Google Scholar
  114. Weng Y, Howard L, Xie D. A novel star-shaped poly (carboxylic acid) for resin-modified glass-ionomer restoratives. J Biomater Sci Polym Ed. 2014;18:1–15.Google Scholar
  115. Wessel C, Ostermann R, Dersch R, Smarsly BM. Formation of inorganic nanofibers from preformed TiO2 nanoparticles via electrospinning. J Phys Chem C. 2010;115:362–72.CrossRefGoogle Scholar
  116. Williams JA, Billington RW, Pearson GJ. Comparison of Ion release from a glass ionomer cement as a function of the method of incorporation of added ions. Biomaterials. 1999;20:589–94.PubMedCrossRefGoogle Scholar
  117. Williams JA, Billington RW, Pearson GJ. The glass ionomer cement: the sources of soluble fluoride. Biomaterials. 2002;23:2191–200.PubMedCrossRefGoogle Scholar
  118. Wilson AD. Acidobasicity of oxide glasses used in glass ionomer cements. Dent Mater. 1996;12:25–9.PubMedCrossRefGoogle Scholar
  119. Wilson AD, Nicholson JW. Acid–base cements: their biomedical and industrial applications. New York, NY, USA: Cambridge University Press; 2005.Google Scholar
  120. Wilson GO, Andersson HM, White SR, Sottos NR, Moore JS, Braun PV. Self‐healing polymers. In: Encyclopedia of polymer science and technology. Hoboken, NJ: Wiley-Interscience. 2010.Google Scholar
  121. Wu N, Xia X, Wei Q, Huang F. Preparation and properties of organic/inorganic hybrid nanofibres. Fibres and Textiles in Eastern Europe. 2010;18(78):21–3.Google Scholar
  122. Wu W, Xie D, Puckett A, Mays JW. Synthesis and formulation of vinyl-containing polyacids for improved light-cured glass-ionomer cements. Eur Polym J. 2003;39:663–70.CrossRefGoogle Scholar
  123. Wu DY, Meure S, Solomon D. Self-healing polymeric materials: a review of recent developments. Prog Polym Sci. 2008;33:479–522.CrossRefGoogle Scholar
  124. Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater. 2000;16:129–38.PubMedCrossRefGoogle Scholar
  125. Xie D, Zhao J, Weng Y. Synthesis and application of novel multi-arm poly(carboxylic acid)s for glass-ionomer restoratives. J Biomater Appl. 2010;24:419–36.PubMedCrossRefGoogle Scholar
  126. Xie D, Weng Y, Guo X, Zhao J, Gregory RL, Zheng C. Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions. Dent Mater. 2011;27:487–96.PubMedCrossRefGoogle Scholar
  127. Xu HH, Moreau JL, Sun L, Chow LC. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater. 2011;27:762–9.PubMedCentralPubMedCrossRefGoogle Scholar
  128. Yamazaki T, Schricker SR, Brantley WA, Culbertson BM, Johnston W. Viscoelastic behavior and fracture toughness of six glass-ionomer cements. J Prosthet Dent. 2006;96:266–72.PubMedCrossRefGoogle Scholar
  129. Yelamanchili A, Darvell BW. Network competition in a resin-modified glass-ionomer cement. Dent Mater. 2008;24:1065–9.PubMedCrossRefGoogle Scholar
  130. Yiu CK, Tay FR, King NM, Pashley DH, Carvalho RM, Carrilho MR. Interaction of resin-modified glass-ionomer cements with moist dentine. J Dent. 2004a;32:521–30.PubMedCrossRefGoogle Scholar
  131. Yiu CK, Tay FR, King NM, Pashley DH, Sidhu SK, Neo JC, Toledano M, Wong SL. Interaction of glass-ionomer cements with moist dentin. J Dent Res. 2004b;83:283–9.PubMedCrossRefGoogle Scholar
  132. Yli-Urpo H, Narhi T, Soderling E. Antimicrobial effects of glass ionomer cements containing bioactive glass (S53p4) on oral micro-organisms in vitro. Acta Odontol Scand. 2003;61:241–6.PubMedCrossRefGoogle Scholar
  133. Yoshida Y, Van Meerbeek B, Nakayama Y, Snauwaert J, Hellemans L, Lambrechts P, Vanherle G, Wakasa K. Evidence of chemical bonding at biomaterial-hard tissue interfaces. J Dent Res. 2000;79:709–14.PubMedCrossRefGoogle Scholar
  134. Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release. 2005;109:256–74.PubMedCrossRefGoogle Scholar
  135. Yuan Y, Yin T, Rong M, Zhang M. Self healing in polymers and polymer composites. Concepts, realization and outlook: a review. Exp Polym Lett. 2008;2:238–50.CrossRefGoogle Scholar
  136. Zalizniak I, Palamara JE, Wong RH, Cochrane NJ, Burrow MF, Reynolds EC. Ion release and physical properties of CPP-ACP modified GIC in acid solutions. J Dent. 2013;41:449–54.PubMedCrossRefGoogle Scholar
  137. Zhang M, Bando Y, Wada K, Kurashima K. Synthesis of nanotubes and nanowires of silicon oxide. J Mater Sci Lett. 1999;18:1911–3.CrossRefGoogle Scholar
  138. Zhang L, Tang T, Zhang ZL, Liang B, Wang XM, Fu BP. Improvement of enamel bond strengths for conventional and resin-modified glass ionomers: acid-etching vs. conditioning. J Zhejiang Univ Sci B. 2013;14:1013–24.PubMedCentralPubMedCrossRefGoogle Scholar
  139. Zhao J, Weng Y, Xie D. In vitro wear and fracture toughness of an experimental light-cured glass–ionomer cement. Dent Mater. 2009;25:526–34.PubMedCrossRefGoogle Scholar
  140. Zhou F-L, Gong R-H. Manufacturing technologies of polymeric nanofibres and nanofibre yarns. Polym Int. 2008;57:837–45.CrossRefGoogle Scholar
  141. Zoergiebel J, Ilie N. Evaluation of a conventional glass ionomer cement with new zinc formulation: effect of coating, aging and storage agents. Clin Oral Investig. 2013;17:619–26.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Research and DevelopmentSDI LimitedBayswaterAustralia

Personalised recommendations