Advertisement

Finite-Temperature Restoration of the Brout–Englert–Higgs Effect

  • Antal Jakovác
  • András Patkós
Chapter
  • 969 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 912)

Abstract

The origin of the matter–antimatter asymmetry of our cosmic neighborhood is one of the outstanding challenges faced at present by cosmology and particle physics. This asymmetry plays a central role in the successful modeling of the primordial nucleosynthesis (for a general introduction to particle-physics aspects of cosmology, see [1]).

Keywords

Higgs Mass Gauge Model Critical Endpoint Electroweak Phase Transition Symmetric Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley, New York, 1990)zbMATHGoogle Scholar
  2. 2.
    A. Sakharov, J. Exp. Theor. Phys. 5, 24 (1967)Google Scholar
  3. 3.
    G. t’Hooft, Phys. Rev. D 14, 3432 (1976)CrossRefADSGoogle Scholar
  4. 4.
    N. Manton, Phys. Rev. D 28, 2019 (1983)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    F. Klinkhamer, N. Manton, Phys. Rev. D 30, 2212 (1984)CrossRefADSGoogle Scholar
  6. 6.
    M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)CrossRefADSGoogle Scholar
  7. 7.
    V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, Phys. Lett. B 155, 36 (1985)CrossRefADSGoogle Scholar
  8. 8.
    G.W. Anderson, L.J. Hall, Phys. Rev. D 45, 2685 (1992)CrossRefADSGoogle Scholar
  9. 9.
    M. Carrington, Phys. Rev. D 45, 2933 (1992)CrossRefADSGoogle Scholar
  10. 10.
    Z. Fodor, A. Hebecker, Nucl. Phys. B 432, 127 (1994)CrossRefADSGoogle Scholar
  11. 11.
    W. Buchmuller, O. Philipsen, Nucl. Phys. B 443, 47 (1995)CrossRefADSGoogle Scholar
  12. 12.
    K. Kajantie, M. Laine, K. Rummukainen, M. Shaposhnikov, Phys. Rev. Lett. 77, 2887 (1996)CrossRefADSGoogle Scholar
  13. 13.
    F. Karsch, T. Neuhaus, A. Patkós, J. Rank, Proceedings of Lattice 96 international conference. Nucl. Phys. Proc. Suppl. 53, 623 (1997)CrossRefADSGoogle Scholar
  14. 14.
    K. Farakos, K. Kajantie, K. Rummukainen, M. Shaposhnikov, Nucl. Phys. B 425, 67 (1994)CrossRefADSGoogle Scholar
  15. 15.
    A. Jakovác, K. Kajantie, A. Patkós, Phys. Rev. D 49, 6810 (1994)CrossRefADSGoogle Scholar
  16. 16.
    D.A. Kirzhnits, A.D. Linde, Phys. Lett. B 72, 471 (1972)CrossRefADSGoogle Scholar
  17. 17.
    G. Alexanian, V.P. Nair, Phys. Lett. B 352, 435 (1995)CrossRefADSGoogle Scholar
  18. 18.
    A. Patkós, P. Petreczky, Zs. Szép, Eur. Phys. J. C5, 337 (1998)Google Scholar
  19. 19.
    F. Eberlein, Phys. Lett. B 439, 130 (1998)CrossRefADSGoogle Scholar
  20. 20.
    F. Karsch, T. Neuhaus, A. Patkós, J. Rank, Nucl. Phys. B 474, 217 (1996)CrossRefADSGoogle Scholar
  21. 21.
    I. Montvay, G. Münster, Quantum Fields on Lattice (Cambridge University Press, Cambridge, 1994)CrossRefGoogle Scholar
  22. 22.
    H.J. Rothe, Lattice Gauge Theories: An Introduction, 4th edn. (World Scientific, Singapore, 2012)CrossRefGoogle Scholar
  23. 23.
    C.N. Yang, T.D. Lee, Phys. Rev. 87, 404 (1952)zbMATHMathSciNetCrossRefADSGoogle Scholar
  24. 24.
    M. Laine, Nucl. Phys. B 451, 484 (1995)CrossRefADSGoogle Scholar
  25. 25.
    M- Gürtler, E.-M. Ilgenfritz, A. Schiller, Nucl. Phys. Proc. Suppl. 63, 566 (1998)Google Scholar
  26. 26.
    F. Csikor, Z. Fodor, J. Heitger, Phys. Rev. Lett. 82, 21 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Antal Jakovác
    • 1
  • András Patkós
    • 1
  1. 1.Institute of PhysicsRoland Eötvös UniversityBudapestHungary

Personalised recommendations