The Large-N Expansion

  • Antal Jakovác
  • András Patkós
Part of the Lecture Notes in Physics book series (LNP, volume 912)


Conventionally, one computes physical observables in power series of coupling strengths characterizing the interaction. In effective theories of strong interactions, this choice leads to unacceptably large higher-order corrections. One of the most successful propositions for an alternative expansion parameter is an expansion in the inverse powers of the number of degrees of freedom representing the dynamical variables. In connection with the chiral symmetry-breaking, the reciprocal of the number of light (nearly massless) quarks and correspondingly the reciprocal number of light (pseudo-Goldstone) mesons provide examples of such acceptably small (less than unity) parameters. In this chapter, we shall first give a technically detailed account of constructing the renormalized leading-order (LO) and next-to-leading-order (NLO) solutions of a scalar field with N components supplied with O(N)-symmetric dynamics. The chapter closes with a review of the quark–meson model, where the O(N)-symmetric meson theory is supplemented with quark degrees of freedom interacting with meson fields via Yukawa coupling.


Lead Order Landau Pole Auxiliary Field Saddle Point Equation Meson Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S.-K. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, 1976)Google Scholar
  2. 2.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th edn. (Clarendon Press, Oxford, 2004)Google Scholar
  3. 3.
    M. Moshe, J. Zinn-Justin, Quantum field theory in the large N limit: a review. Phys. Rep. 385, 69 (2003)zbMATHMathSciNetCrossRefADSGoogle Scholar
  4. 4.
    J. Goldstone, Nuovo Cimento 19, 154 (1961)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    J.-P. Blaizot, E. Iancu, U. Reinosa, Nucl. Phys. A 736, 149 (2004)CrossRefADSGoogle Scholar
  6. 6.
    M. Lüscher, P. Weisz, Nucl. Phys. B 318, 705 (1989)CrossRefADSGoogle Scholar
  7. 7.
    G. Aarts, D. Ahrensmeier, R. Baier, J. Berges, J. Serreau, Phys. Rev. D 66, 045008 (2002)CrossRefADSGoogle Scholar
  8. 8.
    G. Fejős, A. Patkós, Zs. Szép, Phys. Rev. D 80, 025015 (2010)Google Scholar
  9. 9.
    G. Fejős, A. Patkós, Zs. Szép, Phys. Rev. D 90, 016014 (2014)Google Scholar
  10. 10.
    D. Dominici, U.M.B. Marconi, Phys. Lett. B 319, 171 (1993)CrossRefADSGoogle Scholar
  11. 11.
    J. Berges, Sz. Borsányi, U. Reinosa, J. Serreau, Ann. Phys. 320, 344 (2005)Google Scholar
  12. 12.
    G. Fejős, A. Patkós, Phys. Rev. D 82, 045011 (2010)CrossRefADSGoogle Scholar
  13. 13.
    H. Meyer-Ortmanns, B.J. Schaefer, Phys. Rev. D 53, 6586 (1996)CrossRefADSGoogle Scholar
  14. 14.
    G. Fejős, Phys. Rev. D 87, 056006 (2013)CrossRefADSGoogle Scholar
  15. 15.
    D.U. Jungnickel, C. Wetterich, Phys. Rev. D 53, 5142 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Antal Jakovác
    • 1
  • András Patkós
    • 1
  1. 1.Institute of PhysicsRoland Eötvös UniversityBudapestHungary

Personalised recommendations