Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 912))

  • 1281 Accesses

Abstract

The aim of this chapter is to present methods for improving the convergence properties of the perturbation theory. In particular, the influence of new energy scales appearing when one embeds a field theory into a specific environment might require critical analysis of the formal perturbation series, since infrared (IR) divergences might be generated by the new scale. The chapter begins with a discussion of the origin of IR singularities. It is followed by the presentation of the general optimization strategy and the question of the renormalizability of optimized series. The detailed implementation of the strategy will be illustrated with the example of the one-component ϕ 4-theory. In the second half of the chapter, an enlarged perturbative framework will be introduced when a static resummation is not satisfactory, and a momentum-dependent resummation is needed. This is accomplished by the two-particle-irreducible (2PI) approximation, which is understood in our interpretation also as a specific example of resummation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Often, IR problems appear only as enhanced contributions and not actual divergences. Nevertheless, we will call them “IR divergences.”

References

  1. P.M. Stevenson, Phys. Rev. D 23, 2916 (1981)

    Article  ADS  Google Scholar 

  2. D. O’Connor, C.R. Stephens, Int. J. Mod. Phys. A 9, 2805 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. S. Chiku, T. Hatsuda, Phys. Rev. D 58, 076001 (1998)

    Article  ADS  Google Scholar 

  4. S. Chiku, Prog. Theor. Phys. 104, 1129 (2000)

    Article  ADS  Google Scholar 

  5. L.H. Chan, R.W. Haymaker, Phys. Rev. D 7, 402 (1973)

    Article  ADS  Google Scholar 

  6. T. Herpay, Zs. Szép, Phys. Rev. D 74, 025008 (2006)

    Google Scholar 

  7. A. Jakovác, Zs. Szép, Phys. Rev. D 71, 105001 (2005)

    Google Scholar 

  8. P. Petreczky, F. Karsch, A. Patkós, Phys. Lett. B 401, 69 (1997)

    Article  ADS  Google Scholar 

  9. J.-P. Blaizot, N. Wschebor, Phys. Lett. B741, 310 (2014)

    Google Scholar 

  10. P. Kovács, Zs. Szép, Phys. Rev. D 75, 025015 (2007)

    Google Scholar 

  11. H.v. Hees, J. Knoll, Phys. Rev. D 65, 025010 (2002)

    Google Scholar 

  12. H.v. Hees, J. Knoll, Phys. Rev. D 65, 105005 (2002)

    Google Scholar 

  13. H.v. Hees and J. Knoll, Phys. Rev. D 66, 025028 (2002)

    Google Scholar 

  14. J.P. Blaizot, E. Iancu, U. Reinosa, Phys. Lett. B 568, 160 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. J.P. Blaizot, E. Iancu, U. Reinosa, Nucl. Phys. A 736, 149 (2004)

    Article  ADS  Google Scholar 

  16. F. Cooper, B. Mihaila, J.F. Dawson, Phys. Rev. D 70, 105008 (2004)

    Article  ADS  Google Scholar 

  17. E. Calzetta, B.L. Hu, Phys. Rev. D 35, 495 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Arrizabalaga, J. Smit, Phys. Rev. D 66, 065014 (2002)

    Article  ADS  Google Scholar 

  19. J. Berges, S. Borsányi, U. Reinosa, J. Serreau, Ann. Phys. 320, 344 (2005)

    Article  MATH  ADS  Google Scholar 

  20. A. Patkós, Zs. Szép, Nucl. Phys. A 811, 329 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jakovác, A., Patkós, A. (2016). Optimized Perturbation Theory. In: Resummation and Renormalization in Effective Theories of Particle Physics. Lecture Notes in Physics, vol 912. Springer, Cham. https://doi.org/10.1007/978-3-319-22620-0_4

Download citation

Publish with us

Policies and ethics