Skip to main content

Collider Phenomenology

  • Chapter
  • 1106 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 913))

Abstract

In this chapter we focus on the phenomenology of the composite resonances. Due to their ubiquitous presence and their tight connection with the Higgs and Electro-Weak (EW) dynamics, these states are one of the primary targets to directly test the composite Higgs scenarios in collider experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In order to avoid confusion with the notation used for the composite states, we denote the embedding of the elementary fields in the fundamental SO(5) representation by \(q_{L}^{\mathbf{5}}\) and \(t_{R}^{\mathbf{5}}\), and not by Q L and T R as in the previous chapters. Later on we will adopt an analogous notation for the embedding in the 14.

  2. 2.

    The X 2∕3 can be the lightest resonance inside the fourplet due to level-repulsion effects if the singlet and fourplet are close in mass. In this case, however, the lightest charge 2∕3 state is not purely the X 2∕3, but contains a large admixture of the \(\tilde{T}\).

  3. 3.

    For simplicity in the following we will drop the prime in front of the T and \(X_{2/3}^{{\prime}}\) resonances and we will denote them simply by T and X 2∕3.

  4. 4.

    For shortness we denote by Z 2∕3 the combination of states that mixes with the top and by Y 2∕3 and U 2∕3 the orthogonal ones.

  5. 5.

    The cross sections for pair and single production of top partners at the 8 and 13 TeV LHC can be found in [5].

  6. 6.

    See section “Discrete Symmetries” in Appendix in Chap. 3Beyond the Sigma-Model and section “The Custodial Symmetries” in Appendix in Chap. 7EW Precision Tests for a detailed discussion of the P LR symmetry and its implications.

  7. 7.

    Other corrections can arise from finite-mass effects due to the Z boson. These effects however are suppressed by \(m_{Z}^{2}/m_{\rho }^{2}\) and are negligible.

  8. 8.

    For shortness we do not report the explicit couplings of the resonances in the 9 multiplet. The explicit expressions for the leading couplings of these states can be found in [4].

  9. 9.

    Significant deviations from this estimate can appear if a light singlet is present or if the t R mixing is much larger than the t L one (\(y_{R} \gg y_{L}\)). In these cases the coupling follows the general estimate in Eq. (6.43).

  10. 10.

    One free parameter, namaly y L4 in the 5 + 5 model and y Lt in the 14 + 1, has been fixed by requiring the correct value of the top mass.

  11. 11.

    The interested reader can find a more detailed discussion in [4].

  12. 12.

    Notice that the assumption that \(\rho _{\mu }^{X}\) transforms as a gauge field does not imply any real constraint on its properties. In full generality one can define a shifted version of the \(\rho _{\mu }^{X}\) field, namely \(\rho _{\mu }^{{\prime}X} \equiv \rho _{\mu }^{X} - g_{0}^{{\prime}}B_{\mu }\), that is invariant under U(1) X and rewrite the effective Lagrangian in terms of the new field.

  13. 13.

    This situation is not uncommon in explicit models. For instance in the minimal scenarios all the top partners are charged under the U(1) X subgroup, thus we expect them to be coupled to vector fields with the quantum numbers of the \(\rho _{\mu }^{X}\) resonance.

  14. 14.

    See for instance [39] for a collider study of heavy gluons decaying to top partners.

References

  1. A. De Simone, O. Matsedonskyi, R. Rattazzi, A. Wulzer, A first top partner Hunter’s guide. JHEP 1304, 004 (2013). arXiv:1211.5663 [hep-ph]

  2. C. Grojean, O. Matsedonskyi, G. Panico, Light top partners and precision physics. JHEP 1310, 160 (2013). arXiv:1306.4655 [hep-ph]

  3. R. Contino, L. Da Rold, A. Pomarol, Light custodians in natural composite Higgs models. Phys. Rev. D75, 055014 (2007). arXiv:hep-ph/0612048 [hep-ph]

  4. O. Matsedonskyi, F. Riva, T. Vantalon, Composite charge 8/3 resonances at the LHC. JHEP 1404, 059 (2014). arXiv:1401.3740 [hep-ph]

  5. O. Matsedonskyi, G. Panico, A. Wulzer, On the interpretation of top partners searches. JHEP 1412, 097 (2014). arXiv:1409.0100 [hep-ph]

  6. M.S. Chanowitz, M.K. Gaillard, The TeV physics of strongly interacting W’s and Z’s. Nucl. Phys. B261, 379 (1985)

    Article  ADS  Google Scholar 

  7. A. Wulzer, An equivalent gauge and the equivalence theorem. Nucl. Phys. B885, 97–126 (2014). arXiv:1309.6055 [hep-ph]

    Google Scholar 

  8. S. Dawson, The effective W approximation. Nucl. Phys. B249, 42–60 (1985)

    Article  ADS  Google Scholar 

  9. G.L. Kane, W. Repko, W. Rolnick, The effective W+-, Z0 approximation for high-energy collisions. Phys. Lett. B148, 367–372 (1984)

    Article  ADS  Google Scholar 

  10. J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra et al., The other natural two Higgs doublet model. Nucl. Phys. B853, 1–48 (2011). arXiv:1105.5403 [hep-ph]

    Google Scholar 

  11. R. Contino, G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states. JHEP 0806, 026 (2008). arXiv:0801.1679 [hep-ph]

    Google Scholar 

  12. G. Dissertori, E. Furlan, F. Moortgat, P. Nef, Discovery potential of top-partners in a realistic composite Higgs model with early LHC data. JHEP 1009, 019 (2010). arXiv:1005.4414 [hep-ph]

  13. J. Mrazek, A. Wulzer, A strong sector at the LHC: top partners in same-sign dileptons. Phys. Rev. D81, 075006 (2010). arXiv:0909.3977 [hep-ph]

  14. ATLAS Collaboration, Search for anomalous production of events with same-sign dileptons and b jets in 14.3 fb−1 of pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector (2013). ATLAS-CONF-2013-051, ATLAS-COM-CONF-2013-055

    Google Scholar 

  15. S. Chatrchyan et al. [CMS Collaboration], Search for top-quark partners with charge 5/3 in the same-sign dilepton final state. Phys. Rev. Lett. 112(17), 171801 (2014). CMS-B2G-12-012, CERN-PH-EP-2013-216. arXiv:1312.2391 [hep-ex]

  16. CMS Collaboration, S. Chatrchyan et al., Inclusive search for a vector-like T quark with charge \(\frac{2} {3}\) in pp collisions at \(\sqrt{s}\) = 8 TeV. Phys. Lett. B729, 149–171 (2014). CMS-B2G-12-015, CERN-PH-EP-2013-215. arXiv:1311.7667 [hep-ex]

  17. ATLAS Collaboration, Search for pair production of new heavy quarks that decay to a Z boson and a third generation quark in pp collisions at \(\mathbf{\sqrt{s} = 8}\) TeV with the ATLAS detector (2013). ATLAS-CONF-2013-056, ATLAS-COM-CONF-2013-070

    Google Scholar 

  18. ATLAS Collaboration, Search for heavy top-like quarks decaying to a Higgs boson and a top quark in the lepton plus jets final state in pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector (2013). ATLAS-CONF-2013-018, ATLAS-COM-CONF-2013-024

    Google Scholar 

  19. Particle Data Group Collaboration, K. Olive et al., Review of particle physics. Chin. Phys. C38, 090001 (2014)

  20. ATLAS Collaboration, Search for pair production of heavy top-like quarks decaying to a high-p T W boson and a b quark in the lepton plus jets final state in pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector (2013). ATLAS-CONF-2013-060, ATLAS-COM-CONF-2013-066

    Google Scholar 

  21. N.G. Ortiz, J. Ferrando, D. Kar, M. Spannowsky, Reconstructing singly produced top partners in decays to Wb. Phys. Rev. D90, 075009 (2014). arXiv:1403.7490 [hep-ph]

  22. E. Álvarez, L. Da Rold, J.I. Sanchez Vietto, Single production of an exotic bottom partner at LHC. JHEP 1402, 010 (2014). arXiv:1311.2077 [hep-ph]

  23. M. Gillioz, R. Gröber, A. Kapuvari, M. Mühlleitner, Vector-like bottom quarks in composite Higgs models. JHEP 1403, 037 (2014). arXiv:1311.4453 [hep-ph]

  24. K. Kumar, W. Shepherd, T.M. Tait, R. Vega-Morales, Beautiful mirrors at the LHC. JHEP 1008, 052 (2010). arXiv:1004.4895 [hep-ph]

  25. C. Delaunay, O. Gedalia, S.J. Lee, G. Perez, E. Ponton, Ultra visible warped model from flavor triviality and improved naturalness. Phys. Rev. D83, 115003 (2011). arXiv:1007.0243 [hep-ph]

  26. C. Delaunay, O. Gedalia, S.J. Lee, G. Perez, E. Ponton, Extraordinary phenomenology from warped flavor triviality. Phys. Lett. B703, 486–490 (2011). arXiv:1101.2902 [hep-ph]

    Google Scholar 

  27. C. Delaunay, T. Flacke, J. Gonzalez-Fraile, S.J. Lee, G. Panico et al., Light non-degenerate composite partners at the LHC. JHEP 1402, 055 (2014). arXiv:1311.2072 [hep-ph]

  28. C. Delaunay, C. Grojean, G. Perez, Modified Higgs physics from composite light flavors. JHEP 1309, 090 (2013). arXiv:1303.5701 [hep-ph]

  29. L. Da Rold, C. Delaunay, C. Grojean, G. Perez, Up asymmetries from exhilarated composite flavor structures. JHEP 1302, 149 (2013). arXiv:1208.1499 [hep-ph]

  30. M. Redi, A. Weiler, Flavor and CP invariant composite Higgs models. JHEP 1111, 108 (2011). arXiv:1106.6357 [hep-ph]

  31. M. Redi, V. Sanz, M. de Vries, A. Weiler, Strong signatures of right-handed compositeness. JHEP 1308, 008 (2013). arXiv:1305.3818

  32. F. del Aguila, A. Carmona, J. Santiago, Tau custodian searches at the LHC. Phys. Lett. B695, 449–453 (2011). arXiv:1007.4206 [hep-ph]

  33. A. Falkowski, D.M. Straub, A. Vicente, Vector-like leptons: Higgs decays and collider phenomenology. JHEP 1405, 092 (2014). arXiv:1312.5329 [hep-ph]

  34. D. Greco, D. Liu, Hunting composite vector resonances at the LHC: naturalness facing data. JHEP 1412, 126 (2014). arXiv:1410.2883 [hep-ph]

  35. D. Pappadopulo, A. Thamm, R. Torre, A. Wulzer, Heavy vector triplets: bridging theory and data. JHEP 1409, 060 (2014). arXiv:1402.4431 [hep-ph]

  36. R. Contino, D. Marzocca, D. Pappadopulo, R. Rattazzi, On the effect of resonances in composite Higgs phenomenology. JHEP 1110, 081 (2011). arXiv:1109.1570 [hep-ph]

    Google Scholar 

  37. B. Bellazzini, C. Csaki, J. Hubisz, J. Serra, J. Terning, Composite Higgs sketch. JHEP 1211, 003 (2012). arXiv:1205.4032 [hep-ph]

    Google Scholar 

  38. C. Bini, R. Contino, N. Vignaroli, Heavy-light decay topologies as a new strategy to discover a heavy gluon. JHEP 1201, 157 (2012). arXiv:1110.6058 [hep-ph]

  39. A. Azatov, D. Chowdhury, D. Ghosh, T.S. Ray, Same sign di-lepton candles of the composite gluons. JHEP 1508, 140 (2015). arXiv:1505.01506 [hep-ph]

    Google Scholar 

  40. ATLAS Collaboration, Search for \(W' \rightarrow t\bar{b}\) in proton-proton collisions at a centre-of-mass energy of \(\sqrt{s}\) = 8 TeV with the ATLAS detector (2013). ATLAS-CONF-2013-050, ATLAS-COM-CONF-2013-022

    Google Scholar 

  41. CMS Collaboration, Search for narrow t + b resonances in the leptonic final state at sqrt(s) = 8 TeV (2012). CMS-PAS-B2G-12-010

    Google Scholar 

  42. ATLAS Collaboration, Search for high-mass states with one lepton plus missing transverse momentum in pp collisions at \(\sqrt{s} = 8\,\mathrm{TeV}\) with the ATLAS detector (2014). ATLAS-CONF-2014-017, ATLAS-COM-CONF-2014-017

    Google Scholar 

  43. V. Khachatryan et al. [CMS Collaboration], Search for physics beyond the standard model in final states with a lepton and missing transverse energy in proton-proton collisions at sqrt(s) = 8 TeV. Phys. Rev. D 91(9), 092005 (2015). CMS-EXO-12-060, CERN-PH-EP-2014-176. arXiv:1408.2745 [hep-ex]

  44. CMS Collaboration, Search for heavy resonances in the W/Z-tagged dijet mass spectrum in pp collisions at 8 TeV (2012). CMS-PAS-EXO-12-024

    Google Scholar 

  45. CMS Collaboration, V. Khachatryan et al., Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at \(\sqrt{s}\) = 8 TeV. JHEP 1408, 173 (2014). CMS-EXO-12-024, CERN-PH-EP-2014-071. arXiv:1405.1994 [hep-ex]

  46. ATLAS Collaboration, Search for a WZ resonance in the fully leptonic channel using pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector (2014). ATLAS-CONF-2014-015, ATLAS-COM-CONF-2014-019

    Google Scholar 

  47. CMS Collaboration, Search for W’/technirho in WZ using leptonic final states (2012). CMS-PAS-EXO-12-025

    Google Scholar 

  48. ATLAS Collaboration, A search for \(t\bar{t}\) resonances in the lepton plus jets final state with ATLAS using 14 fb−1 of pp collisions at \(\sqrt{s} = 8\) TeV (2013). ATLAS-CONF-2013-052, ATLAS-COM-CONF-2013-052

    Google Scholar 

  49. CMS Collaboration, Search for anomalous top quark pair production in the boosted all-hadronic final state using pp collisions at sqrt(s) = 8 TeV (2012). CMS-PAS-B2G-12-005

    Google Scholar 

  50. ATLAS Collaboration, G. Aad et al., Search for high-mass dilepton resonances in pp collisions at sqrt(s) = 8 TeV with the ATLAS detector. Phys. Rev. D90, 052005 (2014). arXiv:1405.4123 [hep-ex]

  51. CMS Collaboration, Search for resonances in the dilepton mass distribution in pp collisions at sqrt(s) = 8 TeV (2012). CMS-PAS-EXO-12-061

    Google Scholar 

  52. ATLAS Collaboration, A search for high-mass ditau resonances decaying in the fully hadronic final state in pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector (2013). ATLAS-CONF-2013-066, ATLAS-COM-CONF-2013-083

    Google Scholar 

  53. CMS Collaboration, Search for new resonances decaying to WW to l nu q qbar’ in the final state with a lepton, missing transverse energy, and single reconstructed jet (2012). CMS-PAS-EXO-12-021

    Google Scholar 

  54. M. Chala, J. Juknevich, G. Perez, J. Santiago, The elusive gluon. JHEP 1501, 092 (2015). arXiv:1411.1771 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Panico, G., Wulzer, A. (2016). Collider Phenomenology. In: The Composite Nambu-Goldstone Higgs. Lecture Notes in Physics, vol 913. Springer, Cham. https://doi.org/10.1007/978-3-319-22617-0_6

Download citation

Publish with us

Policies and ethics