Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 371 Accesses

Abstract

Operations in intensified channels have emerged as an important area of research and have found numerous applications in (bio)chemical analysis and synthesis, reactors, micro-power generation, fuel cells and thermal management systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadie, T., Aubin, J., Legendre, D., & Xuereb, C. (2012). Hydrodynamics of gas–liquid Taylor flow in rectangular microchannels. Microfluidics and Nanofluidics, 12, 355–369.

    Article  Google Scholar 

  • Ahmed, B., Barrow, D., & Wirth, T. (2006). Enhancement of reaction rates by segmented fluid flow in capillary scale reactors. Advanced Synthesis and Catalysis, 348, 1043–1048.

    Article  CAS  Google Scholar 

  • Allen, D., Baston, G., Bradley, A. E., Gorman, T., Haile, A., Hamblett, I., et al. (2002). An investigation of the radiochemical stability of ionic liquids. Green Chemistry, 4, 152–158.

    Article  CAS  Google Scholar 

  • Angelescu, D., Mercier, B., Siess, D., & Schroeder, R. (2010). Microfluidic capillary separation and real-time spectroscopic analysis of specific components from multiphase mixtures. Analytical Chemistry, 82, 2412–2420.

    Article  CAS  Google Scholar 

  • Angeli, P., & Gavriilidis, A. (2008). Hydrodynamics of Taylor flow in small channels: a review. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 222, 737–751.

    Article  CAS  Google Scholar 

  • Angeli, P., & Hewitt, G. (1999). Pressure gradient in horizontal liquid–liquid flows. International Journal of Multiphase Flow, 24, 1183–1203.

    Article  Google Scholar 

  • Angeli, P., & Hewitt, G. (2000). Flow structure in horizontal oil–water flow. International Journal of Multiphase Flow, 26, 1117–1140.

    Article  CAS  Google Scholar 

  • Aota, A., Mawatari, K., & Kitamori, T. (2009). Parallel multiphase microflows: Fundamental physics, stabilization methods and applications. Lab on a Chip, 9, 2470–2476.

    Article  CAS  Google Scholar 

  • Assmann, N., & von Rohr, P. R. (2011). Extraction in microreactors: Intensification by adding an inert gas phase. Chemical Engineering and Processing: Process Intensification, 50, 822–827.

    Article  CAS  Google Scholar 

  • Aussillous, P. & Quéré, D. (2000). Quick deposition of a fluid on the wall of a tube. Physics of Fluids (1994-present), 12, 2367–2371.

    Google Scholar 

  • Bannwart, A. C. (2001). Modeling aspects of oil–water core–annular flows. Journal of Petroleum Science and Engineering, 32, 127–143.

    Article  CAS  Google Scholar 

  • Bell, T. J., & Ikeda, Y. (2011). The application of novel hydrophobic ionic liquids to the extraction of uranium (vi) from nitric acid medium and a determination of the uranyl complexes formed. Dalton Transactions, 40, 10125–10130.

    Article  CAS  Google Scholar 

  • Berčič, G., & Pintar, A. (1997). The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries. Chemical Engineering Science, 52, 3709–3719.

    Article  Google Scholar 

  • Beretta, A., Ferrari, P., Galbiati, L., & Andreini, P. (1997). Horizontal oil-water flow in small diameter tubes. Flow patterns. International Communications in Heat and Mass Transfer, 24, 223–229.

    Article  CAS  Google Scholar 

  • Bico, J., & Quere, D. (2000). Liquid trains in a tube. EPL (Europhysics Letters), 51, 546.

    Article  CAS  Google Scholar 

  • Billard, I., Ouadi, A., Jobin, E., Champion, J., Gaillard, C., & Georg, S. (2011). Understanding the extraction mechanism in ionic liquids: UO2 2+/HNO3/TBP/C4-mimTf2N as a case study. Solvent Extraction and Ion Exchange, 29, 577–601.

    Article  CAS  Google Scholar 

  • Binnemans, K. (2007). Lanthanides and actinides in ionic liquids. Chemical Reviews, 107, 2592–2614.

    Article  CAS  Google Scholar 

  • Brauner, N. (1991). Two-phase liquid-liquid annular flow. International Journal of Multiphase Flow, 17, 59–76.

    Article  CAS  Google Scholar 

  • Bretherton, F. P. (1961). The motion of long bubbles in tubes. Journal of Fluid Mechanics, 10, 166–188.

    Article  Google Scholar 

  • Burns, J. R., & Ramshaw, C. (2001). The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab on a Chip, 1, 10–15.

    Article  CAS  Google Scholar 

  • Castell, O. K., Allender, C. J., & Barrow, D. A. (2009). Liquid–liquid phase separation: characterisation of a novel device capable of separating particle carrying multiphase flows. Lab on a Chip, 9, 388–396.

    Article  CAS  Google Scholar 

  • Chakrabarti, D., Das, G., & Ray, S. (2005). Pressure drop in liquid-liquid two phase horizontal flow: Experiment and prediction. Chemical Engineering and Technology, 28, 1003–1009.

    Article  CAS  Google Scholar 

  • Charpentier, J.-C. (1981). Mass-transfer rates in gas-liquid absorbers and reactors. Advances in chemical engineering, 11, 1–133.

    Article  CAS  Google Scholar 

  • Chen, I. Y., Yang, K.-S., & Wang, C.-C. (2002). An empirical correlation for two-phase frictional performance in small diameter tubes. International Journal of Heat and Mass Transfer, 45, 3667–3671.

    Article  CAS  Google Scholar 

  • Chiappe, C., & Pieraccini, D. (2005). Ionic liquids: Solvent properties and organic reactivity. Journal of Physical Organic Chemistry, 18, 275–297.

    Article  CAS  Google Scholar 

  • Christopher, G. F., Noharuddin, N. N., Taylor, J. A., & Anna, S. L. (2008). Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 78, 036317.

    Article  CAS  Google Scholar 

  • Cocalia, V. A., Jensen, M. P., Holbrey, J. D., Spear, S. K., Stepinski, D. C. & Rogers, R. D. (2005). Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents. Dalton Transactions, 2005, 1966–1971.

    Google Scholar 

  • de Menech, M., Garstecki, P., Jousse, F., & Stone, H. (2008). Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 595, 141–161.

    Article  Google Scholar 

  • Dehkordi, A. M. (2001). Novel type of impinging streams contactor for liquid-liquid extraction. Industrial and Engineering Chemistry Research, 40, 681–688.

    Article  CAS  Google Scholar 

  • Dehkordi, A. M. (2002). Liquid–liquid extraction with chemical reaction in a novel impinging-jets reactor. AIChE Journal, 48, 2230–2239.

    Article  CAS  Google Scholar 

  • Dessimoz, A.-L., Cavin, L., Renken, A., & Kiwi-Minsker, L. (2008). Liquid–liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors. Chemical Engineering Science, 63, 4035–4044.

    Article  CAS  Google Scholar 

  • Di Miceli Raimondi, N., Prat, L., Gourdon, C. & Cognet, P. (2008). Direct numerical simulations of mass transfer in square microchannels for liquid–liquid slug flow. Chemical Engineering Science, 63, 5522–5530.

    Google Scholar 

  • Dietz, M. L. & Dzielawa, J. A. (2001). Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers: Implications for the ‘greenness’ of ionic liquids as diluents in liquid–liquid extraction. Chemical Communications, 20, 2124–2125.

    Google Scholar 

  • Dietz, M. L., & Stepinski, D. C. (2008). Anion concentration-dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids. Talanta, 75, 598–603.

    Article  CAS  Google Scholar 

  • Dore, V., Tsaoulidis, D., & Angeli, P. (2012). Mixing patterns in water plugs during water/ionic liquid segmented flow in microchannels. Chemical Engineering Science, 80, 334–341.

    Article  CAS  Google Scholar 

  • Dummann, G., Quittmann, U., Gröschel, L., Agar, D. W., Wörz, O., & Morgenschweis, K. (2003). The capillary-microreactor: a new reactor concept for the intensification of heat and mass transfer in liquid–liquid reactions. Catalysis Today, 79, 433–439.

    Article  CAS  Google Scholar 

  • Dzyuba, S. V., & Bartsch, R. A. (2002). Influence of structural variations in 1-alkyl (aralkyl)-3-methylimidazolium hexafluorophosphates and bis (trifluoromethylsulfonyl) imides on physical properties of the ionic liquids. ChemPhysChem, 3, 161–166.

    Article  CAS  Google Scholar 

  • Edvinsson, R. K., & Irandoust, S. (1996). Finite-element analysis of Taylor flow. AIChE Journal, 42, 1815–1823.

    Article  CAS  Google Scholar 

  • Fairbrother, F. & Stubbs, A. E. (1935). 119. Studies in electro-endosmosis. Part VI. The “bubble-tube” method of measurement. Journal of the Chemical Society (Resumed), 527–529.

    Google Scholar 

  • Fang, W.-F., Ting, S.-C., Hsu, C.-W., Chen, Y.-T., & Yang, J.-T. (2012). Locally enhanced concentration and detection of oligonucleotides in a plug-based microfluidic device. Lab on a Chip, 12, 923–931.

    Article  CAS  Google Scholar 

  • Fernandes, J., & Sharma, M. (1967). Effective interfacial area in agitated liquid—liquid contactors. Chemical Engineering Science, 22, 1267–1282.

    Article  CAS  Google Scholar 

  • Foroughi, H., & Kawaji, M. (2011). Viscous oil–water flows in a microchannel initially saturated with oil: Flow patterns and pressure drop characteristics. International Journal of Multiphase Flow, 37, 1147–1155.

    Article  CAS  Google Scholar 

  • Gaakeer, W., de Croon, M., van der Schaaf, J., & Schouten, J. (2012). Liquid–liquid slug flow separation in a slit shaped micro device. Chemical Engineering Journal, 207, 440–444.

    Article  CAS  Google Scholar 

  • Garstecki, P., Stone, H. A., & Whitesides, G. M. (2005). Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions. Physical Review Letters, 94, 164501.

    Article  CAS  Google Scholar 

  • Garstecki, P., Fuerstman, M. J., Stone, H. A., & Whitesides, G. M. (2006). Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab on a Chip, 6, 437–446.

    Article  CAS  Google Scholar 

  • Ghaini, A., Kashid, M., & Agar, D. (2010). Effective interfacial area for mass transfer in the liquid–liquid slug flow capillary microreactors. Chemical Engineering and Processing: Process Intensification, 49, 358–366.

    Article  CAS  Google Scholar 

  • Ghaini, A., Mescher, A., & Agar, D. W. (2011). Hydrodynamic studies of liquid–liquid slug flows in circular microchannels. Chemical Engineering Science, 66, 1168–1178.

    Article  CAS  Google Scholar 

  • Giridhar, P., Venkatesan, K., Srinivasan, T., & Rao, P. V. (2004). Effect of alkyl group in 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids on the extraction of uranium by tri-n-butylphosphate diluted with ionic liquids. Journal of Nuclear Radiochemical Science, 5, 21–26.

    Article  CAS  Google Scholar 

  • Giridhar, P., Venkatesan, K., Subramaniam, S., Srinivasan, T. & Vasudeva Rao, P. (2008). Extraction of uranium (VI) by 1.1 M tri-n-butylphosphate/ionic liquid and the feasibility of recovery by direct electrodeposition from organic phase. Journal of Alloys and Compounds, 448, 104–108.

    Google Scholar 

  • Günther, A., & Jensen, K. F. (2006). Multiphase microfluidics: From flow characteristics to chemical and materials synthesis. Lab on a Chip, 6, 1487–1503.

    Article  CAS  Google Scholar 

  • Günther, A., Khan, S. A., Thalmann, M., Trachsel, F., & Jensen, K. F. (2004). Transport and reaction in microscale segmented gas–liquid flow. Lab on a Chip, 4, 278–286.

    Article  CAS  Google Scholar 

  • Gupta, A., & Kumar, R. (2010). Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluidics and Nanofluidics, 8, 799–812.

    Article  Google Scholar 

  • Gupta, A., Murshed, S. S., & Kumar, R. (2009). Droplet formation and stability of flows in a microfluidic T-junction. Applied Physics Letters, 94, 164107.

    Article  CAS  Google Scholar 

  • Gupta, R., Leung, S. S., Manica, R., Fletcher, D. F., & Haynes, B. S. (2013). Hydrodynamics of liquid–liquid Taylor flow in microchannels. Chemical Engineering Science, 92, 180–189.

    Article  CAS  Google Scholar 

  • Han, Y., & Shikazono, N. (2009). Measurement of the liquid film thickness in micro tube slug flow. International Journal of Heat and Fluid Flow, 30, 842–853.

    Article  CAS  Google Scholar 

  • Harries, N., Burns, J. R., Barrow, D. A., & Ramshaw, C. (2003). A numerical model for segmented flow in a microreactor. International Journal of Heat and Mass Transfer, 46, 3313–3322.

    Article  CAS  Google Scholar 

  • Heil, M. (2001). Finite Reynolds number effects in the Bretherton problem. Physics of Fluids (1994-present), 13, 2517–2521.

    Google Scholar 

  • Hoang, D., Portela, L., Kleijn, C., Kreutzer, M., & van Steijn, V. (2013). Dynamics of droplet breakup in a T-junction. Journal of Fluid Mechanics, 717, R4.

    Article  CAS  Google Scholar 

  • Holbrey, J. D. & Seddon, K. R. (1999). The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. Journal of the Chemical Society, Dalton Transactions, 2133–2140.

    Google Scholar 

  • Irandoust, S., & Andersson, B. (1989). Liquid film in Taylor flow through a capillary. Industrial and Engineering Chemistry Research, 28, 1684–1688.

    Article  CAS  Google Scholar 

  • Jensen, M. P., Neuefeind, J., Beitz, J. V., Skanthakumar, S., & Soderholm, L. (2003). Mechanisms of metal ion transfer into room-temperature ionic liquids: the role of anion exchange. Journal of the American Chemical Society, 125, 15466–15473.

    Article  CAS  Google Scholar 

  • Joanicot, M., & Ajdari, A. (2005). Droplet control for microfluidics. Science, 309, 887–888.

    Article  CAS  Google Scholar 

  • Jovanović, J., Zhou, W., Rebrov, E. V., Nijhuis, T., Hessel, V., & Schouten, J. C. (2011). Liquid–liquid slug flow: hydrodynamics and pressure drop. Chemical Engineering Science, 66, 42–54.

    Article  CAS  Google Scholar 

  • Kagimoto, J., Taguchi, S., Fukumoto, K., & Ohno, H. (2010). Hydrophobic and low-density amino acid ionic liquids. Journal of Molecular Liquids, 153, 133–138.

    Article  CAS  Google Scholar 

  • Kashid, M. N., & Agar, D. W. (2007). Hydrodynamics of liquid–liquid slug flow capillary microreactor: flow regimes, slug size and pressure drop. Chemical Engineering Journal, 131, 1–13.

    Article  CAS  Google Scholar 

  • Kashid, M., & Kiwi-Minsker, L. (2011). Quantitative prediction of flow patterns in liquid–liquid flow in micro-capillaries. Chemical Engineering and Processing: Process Intensification, 50, 972–978.

    Article  CAS  Google Scholar 

  • Kashid, M. N., Gerlach, I., Goetz, S., Franzke, J., Acker, J., Platte, F., et al. (2005). Internal circulation within the liquid slugs of a liquid-liquid slug-flow capillary microreactor. Industrial and Engineering Chemistry Research, 44, 5003–5010.

    Article  CAS  Google Scholar 

  • Kashid, M. N., Harshe, Y. M., & Agar, D. W. (2007a). Liquid-liquid slug flow in a capillary: An alternative to suspended drop or film contactors. Industrial and Engineering Chemistry Research, 46, 8420–8430.

    Article  CAS  Google Scholar 

  • Kashid, M. N., Agar, D. W., & Turek, S. (2007b). CFD modelling of mass transfer with and without chemical reaction in the liquid–liquid slug flow microreactor. Chemical Engineering Science, 62, 5102–5109.

    Article  CAS  Google Scholar 

  • Kashid, M., Gupta, A., Renken, A., & Kiwi-Minsker, L. (2010). Numbering-up and mass transfer studies of liquid–liquid two-phase microstructured reactors. Chemical Engineering Journal, 158, 233–240.

    Article  CAS  Google Scholar 

  • Kashid, M. N., Renken, A., & Kiwi-Minsker, L. (2011a). Gas–liquid and liquid–liquid mass transfer in microstructured reactors. Chemical Engineering Science, 66, 3876–3897.

    Article  CAS  Google Scholar 

  • Kashid, M. N., Renken, A. & Kiwi-Minsker, L. (2011). Influence of flow regime on mass transfer in different types of microchannels. Industrial & Engineering Chemistry Research, 50, 6906-6914.

    Google Scholar 

  • Kawahara, A., Chung, P.-Y., & Kawaji, M. (2002). Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel. International Journal of Multiphase Flow, 28, 1411–1435.

    Article  CAS  Google Scholar 

  • Kies, F. K., Benadda, B., & Otterbein, M. (2004). Experimental study on mass transfer of a co-current gas–liquid contactor performing under high gas velocities. Chemical Engineering and Processing: Process Intensification, 43, 1389–1395.

    Article  CAS  Google Scholar 

  • Kilaru, P., Baker, G. A., & Scovazzo, P. (2007). Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids: Data and correlations. Journal of Chemical and Engineering Data, 52, 2306–2314.

    Article  CAS  Google Scholar 

  • King, C., Walsh, E., & Grimes, R. (2007). PIV measurements of flow within plugs in a microchannel. Microfluidics and Nanofluidics, 3, 463–472.

    Article  CAS  Google Scholar 

  • Kinoshita, H., Kaneda, S., Fujii, T., & Oshima, M. (2007). Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab on a Chip, 7, 338–346.

    Article  CAS  Google Scholar 

  • Kralj, J. G., Sahoo, H. R., & Jensen, K. F. (2007). Integrated continuous microfluidic liquid–liquid extraction. Lab on a Chip, 7, 256–263.

    Article  CAS  Google Scholar 

  • Kreutzer, M. T., Kapteijn, F., Moulijn, J. A., Kleijn, C. R., & Heiszwolf, J. J. (2005). Inertial and interfacial effects on pressure drop of Taylor flow in capillaries. AIChE Journal, 51, 2428–2440.

    Article  CAS  Google Scholar 

  • Kuhn, S., Hartman, R. L., Sultana, M., Nagy, K. D., Marre, S., & Jensen, K. F. (2011). Teflon-Coated silicon microreactors: Impact on segmented liquid—liquid multiphase flows. Langmuir, 27, 6519–6527.

    Article  CAS  Google Scholar 

  • Laborie, S., Cabassud, C., Durand-Bourlier, L., & Laine, J. (1999). Characterisation of gas–liquid two-phase flow inside capillaries. Chemical Engineering Science, 54, 5723–5735.

    Article  CAS  Google Scholar 

  • Lac, E., & Sherwood, J. (2009). Motion of a drop along the centreline of a capillary in a pressure-driven flow. Journal of Fluid Mechanics, 640, 27–54.

    Article  Google Scholar 

  • Leclerc, A., Philippe, R., Houzelot, V., Schweich, D., & de Bellefon, C. (2010). Gas–liquid Taylor flow in square micro-channels: New inlet geometries and interfacial area tuning. Chemical Engineering Journal, 165, 290–300.

    Article  CAS  Google Scholar 

  • Lin, R., & Tavlarides, L. L. (2009). Flow patterns of n-hexadecane–CO2 liquid–liquid two-phase flow in vertical pipes under high pressure. International Journal of Multiphase Flow, 35, 566–579.

    Article  CAS  Google Scholar 

  • Lindken, R., Rossi, M., Große, S., & Westerweel, J. (2009). Micro-particle image velocimetry (µPIV): Recent developments, applications, and guidelines. Lab on a Chip, 9, 2551–2567.

    Article  CAS  Google Scholar 

  • Liu, H., Vandu, C. O., & Krishna, R. (2005). Hydrodynamics of Taylor flow in vertical capillaries: flow regimes, bubble rise velocity, liquid slug length, and pressure drop. Industrial and Engineering Chemistry Research, 44, 4884–4897.

    Article  CAS  Google Scholar 

  • Lum, J.-L., Al-Wahaibi, T., & Angeli, P. (2006). Upward and downward inclination oil–water flows. International Journal of Multiphase Flow, 32, 413–435.

    Article  CAS  Google Scholar 

  • Mac Giolla Eain, M., Egan, V. & Punch, J. (2013). Film thickness measurements in liquid–liquid slug flow regimes. International Journal of Heat and Fluid Flow, 44, 515–523.

    Google Scholar 

  • Malsch, D., Kielpinski, M., Merthan, R., Albert, J., Mayer, G., Köhler, J., et al. (2008). μPIV-analysis of Taylor flow in micro channels. Chemical Engineering Journal, 135, S166–S172.

    Article  CAS  Google Scholar 

  • Marchessault, R., & Mason, S. (1960). Flow of entrapped bubbles through a capillary. Industrial and Engineering Chemistry, 52, 79–84.

    Article  CAS  Google Scholar 

  • Murali, M., Bonville, N., & Choppin, G. (2010). Uranyl ion extraction into room temperature ionic liquids: Species determination by ESI and MALDI-MS. Solvent Extraction and Ion Exchange, 28, 495–509.

    Article  CAS  Google Scholar 

  • Nakasima, K., Kubota, F., Maruyama, T., & Goto, M. (2003). Ionic liquids as a novel solvents for lanthanides extraction. Anal Science, 19, 1097–1098.

    Article  Google Scholar 

  • Nockemann, P., Servaes, K., van Deun, R., van Hecke, K., van Meervelt, L., Binnemans, K., & Görller-Walrand, C. (2007). Speciation of uranyl complexes in ionic liquids by optical spectroscopy. Inorganic Chemistry, 46, 11335–11344.

    Article  CAS  Google Scholar 

  • Ouadi, A., Klimchuk, O., Gaillard, C., & Billard, I. (2007). Solvent extraction of U (VI) by task specific ionic liquids bearing phosphoryl groups. Green Chemistry, 9, 1160–1162.

    Article  CAS  Google Scholar 

  • Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 37, 123–150.

    Article  CAS  Google Scholar 

  • Qian, D., & Lawal, A. (2006). Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel. Chemical Engineering Science, 61, 7609–7625.

    Article  CAS  Google Scholar 

  • Raimondi, N. D. M., & Prat, L. (2011). Numerical study of the coupling between reaction and mass transfer for liquid-liquid slug flow in square microchannels. AIChE Journal, 57, 1719–1732.

    Article  CAS  Google Scholar 

  • Rodriguez, O., & Oliemans, R. (2006). Experimental study on oil–water flow in horizontal and slightly inclined pipes. International Journal of Multiphase Flow, 32, 323–343.

    Article  CAS  Google Scholar 

  • Rogers, R. D. & Seddon, K. R.(2002). Ionic liquids(industrial applications for green chemistry). A. C. S. symposium series. Washington: American Chemical Society.

    Google Scholar 

  • Romero, A., Santos, A., Tojo, J., & Rodriguez, A. (2008). Toxicity and biodegradability of imidazolium ionic liquids. Journal of Hazardous Materials, 151, 268–273.

    Article  CAS  Google Scholar 

  • Rovinsky, J., Brauner, N. & Moalem Maron, D. (1997). Analytical solution for laminar two-phase flow in a fully eccentric core-annular configuration. International journal of multiphase flow, 23, 523–543.

    Google Scholar 

  • Salim, A., Fourar, M., Pironon, J., & Sausse, J. (2008). Oil–water two-phase flow in microchannels: Flow patterns and pressure drop measurements. The Canadian Journal of Chemical Engineering, 86, 978–988.

    Article  CAS  Google Scholar 

  • Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J., & Adrian, R. J. (1998). A particle image velocimetry system for microfluidics. Experiments in Fluids, 25, 316–319.

    Article  CAS  Google Scholar 

  • Sarrazin, F., Loubiere, K., Prat, L., Gourdon, C., Bonometti, T., & Magnaudet, J. (2006). Experimental and numerical study of droplets hydrodynamics in microchannels. AIChE Journal, 52, 4061–4070.

    Article  CAS  Google Scholar 

  • Sarrazin, F., Bonometti, T., Prat, L., Gourdon, C., & Magnaudet, J. (2008). Hydrodynamic structures of droplets engineered in rectangular micro-channels. Microfluidics and Nanofluidics, 5, 131–137.

    Article  Google Scholar 

  • Scheiff, F., Mendorf, M., Agar, D., Reis, N., & Mackley, M. (2011). The separation of immiscible liquid slugs within plastic microchannels using a metallic hydrophilic sidestream. Lab on a Chip, 11, 1022–1029.

    Article  CAS  Google Scholar 

  • Scheiff, F., Holbach, A., & Agar, D. W. (2013). Slug flow of ionic liquids in capillary microcontactors: Fluid dynamic intensification for solvent extraction. Chemical Engineering and Technology, 36, 975–984.

    Article  CAS  Google Scholar 

  • Schwartz, L., Princen, H., & Kiss, A. (1986). On the motion of bubbles in capillary tubes. Journal of Fluid Mechanics, 172, 259–275.

    Article  CAS  Google Scholar 

  • Seddon, K. R., Stark, A., & Torres, M.-J. (2000). Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry, 72, 2275–2287.

    Article  CAS  Google Scholar 

  • Skelland, A. H. P., & Wellek, R. M. (1964). Resistance to mass transfer inside droplets. AIChE Journal, 10, 491–496.

    Article  CAS  Google Scholar 

  • Smiglak, M., Reichert, W. M., Holbrey, J. D., Wilkes, J. S., Sun, L., Thrasher, J. S., et al. (2006). Combustible ionic liquids by design: Is laboratory safety another ionic liquid myth? Chemical Communications, 2554–2556.

    Google Scholar 

  • Song, H., Tice, J. D., & Ismagilov, R. F. (2003). A microfluidic system for controlling reaction networks in time. Angewandte Chemie, 115, 792–796.

    Article  Google Scholar 

  • Srinivasan, V., Pamula, V. K., & Fair, R. B. (2004). Droplet-based microfluidic lab-on-a-chip for glucose detection. Analytica Chimica Acta, 507, 145–150.

    Article  CAS  Google Scholar 

  • Su, Y., Zhao, Y., Chen, G., & Yuan, Q. (2010). Liquid–liquid two-phase flow and mass transfer characteristics in packed microchannels. Chemical Engineering Science, 65, 3947–3956.

    Article  CAS  Google Scholar 

  • Taha, T., & Cui, Z. (2004). Hydrodynamics of slug flow inside capillaries. Chemical Engineering Science, 59, 1181–1190.

    Article  CAS  Google Scholar 

  • Talimi, V., Muzychka, Y., & Kocabiyik, S. (2012). A review on numerical studies of slug flow hydrodynamics and heat transfer in microtubes and microchannels. International Journal of Multiphase Flow, 39, 88–104.

    Article  CAS  Google Scholar 

  • Taylor, G. I. (1961). Deposition of a viscous fluid on the wall of a tube. Journal of Fluid Mechanics, 10, 161–165.

    Article  Google Scholar 

  • Thorsen, T., Roberts, R. W., Arnold, F. H., & Quake, S. R. (2001). Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 86, 4163–4166.

    Article  CAS  Google Scholar 

  • Thulasidas, T. C., Abraham, M. A., & Cerro, R. L. (1997). Flow patterns in liquid slugs during bubble-train flow inside capillaries. Chemical Engineering Science, 52, 2947–2962.

    Article  CAS  Google Scholar 

  • Tice, J. D., Song, H., Lyon, A. D., & Ismagilov, R. F. (2003). Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir, 19, 9127–9133.

    Article  CAS  Google Scholar 

  • Tice, J. D., Lyon, A. D., & Ismagilov, R. F. (2004). Effects of viscosity on droplet formation and mixing in microfluidic channels. Analytica Chimica Acta, 507, 73–77.

    Article  CAS  Google Scholar 

  • Toh, S., McFarlane, J., Tsouris, C., Depaoli, D., Luo, H., & Dai, S. (2006). Room-temperature ionic liquids in liquid–liquid extraction: Effects of solubility in aqueous solutions on surface properties. Solvent Extraction and Ion Exchange, 24, 33–56.

    Article  CAS  Google Scholar 

  • Triplett, K., Ghiaasiaan, S., Abdel-Khalik, S., Lemouel, A., & McCord, B. (1999). Gas–liquid two-phase flow in microchannels: Part II: void fraction and pressure drop. International Journal of Multiphase Flow, 25, 395–410.

    Article  CAS  Google Scholar 

  • Tsaoulidis, D., Dore, V., Angeli, P., Plechkova, N. V., & Seddon, K. R. (2013a). Dioxouranium(VI) extraction in microchannels using ionic liquids. Chemical Engineering Journal, 227, 151–157.

    Article  CAS  Google Scholar 

  • Tsaoulidis, D., Dore, V., Angeli, P., Plechkova, N. V., & Seddon, K. R. (2013b). Extraction of dioxouranium(VI) in small channels using ionic liquids. Chemical Engineering Research and Design, 91, 681–687.

    Article  CAS  Google Scholar 

  • Ufer, A., Mendorf, M., Ghaini, A., & Agar, D. W. (2011). Liquid-liquid slug flow capillary microreactor. Chemical Engineering and Technology, 34, 353–360.

    Article  CAS  Google Scholar 

  • van Baten, J., & Krishna, R. (2004). CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries. Chemical Engineering Science, 59, 2535–2545.

    Article  CAS  Google Scholar 

  • van der Graaf, S., Nisisako, T., Schroen, C., van der Sman, R., & Boom, R. (2006). Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel. Langmuir, 22, 4144–4152.

    Article  CAS  Google Scholar 

  • van Steijn, V., Kreutzer, M. T., & Kleijn, C. R. (2007). μ-PIV study of the formation of segmented flow in microfluidic T-junctions. Chemical Engineering Science, 62, 7505–7514.

    Article  CAS  Google Scholar 

  • van Steijn, V., Kleijn, C. R., & Kreutzer, M. T. (2010). Predictive model for the size of bubbles and droplets created in microfluidic T-junctions. Lab on a Chip, 10, 2513–2518.

    Article  CAS  Google Scholar 

  • Vandu, C. O., Liu, H., & Krishna, R. (2005). Mass transfer from Taylor bubbles rising in single capillaries. Chemical Engineering Science, 60, 6430–6437.

    Article  CAS  Google Scholar 

  • Vasudeva Rao, P., Venkatesan, K. & Srinivasan, T. (2008). Studies on applications of room temperature ionic liquids. Progress in Nuclear Energy, 50, 449–455.

    Google Scholar 

  • Verma, R., & Sharma, M. (1975). Mass transfer in packed liquid—liquid extraction columns. Chemical Engineering Science, 30, 279–292.

    Article  CAS  Google Scholar 

  • Visser, A. E., & Rogers, R. D. (2003). Room-temperature ionic liquids: New solvents for f-element separations and associated solution chemistry. Journal of Solid State Chemistry, 171, 109–113.

    Article  CAS  Google Scholar 

  • Waelchli, S. & Rudolf von Rohr, P. 2006. Two-phase flow characteristics in gas–liquid microreactors. International journal of multiphase flow, 32, 791–806.

    Google Scholar 

  • Wang, C., Nguyen, N.-T., & Wong, T. N. (2007). Optical measurement of flow field and concentration field inside a moving nanoliter droplet. Sensors and Actuators, A: Physical, 133, 317–322.

    Article  CAS  Google Scholar 

  • Wang, J. S., Sheaff, C. N., Yoon, B., Addleman, R. S., & Wai, C. M. (2009). Extraction of uranium from aqueous solutions by using ionic liquid and supercritical carbon dioxide in conjunction. Chemistry-A European Journal, 15, 4458–4463.

    Article  CAS  Google Scholar 

  • Warnier, M., Rebrov, E., de Croon, M., Hessel, V., & Schouten, J. (2008). Gas hold-up and liquid film thickness in Taylor flow in rectangular microchannels. Chemical Engineering Journal, 135, S153–S158.

    Article  CAS  Google Scholar 

  • Wasserscheid, P. & Welton, T. (2008). Ionic liquids in synthesis, New York: Wiley Online Library.

    Google Scholar 

  • Wegmann, A. & Rudolf von Rohr, P. 2006. Two phase liquid–liquid flows in pipes of small diameters. International journal of multiphase flow, 32, 1017–1028.

    Google Scholar 

  • Wei, G.-T., Yang, Z., & Chen, C.-J. (2003). Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Analytica Chimica Acta, 488, 183–192.

    Article  CAS  Google Scholar 

  • Xu, J., Luo, G., Li, S., & Chen, G. (2006). Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Lab on a Chip, 6, 131–136.

    Article  CAS  Google Scholar 

  • Xu, B., Cai, W., Liu, X., & Zhang, X. (2013). Mass transfer behavior of liquid–liquid slug flow in circular cross-section microchannel. Chemical Engineering Research and Design, 91, 1203–1211.

    Article  CAS  Google Scholar 

  • Zhao, Y., Chen, G., & Yuan, Q. (2006). Liquid-liquid two-phase flow patterns in a rectangular microchannel. AIChE Journal, 52, 4052–4060.

    Article  CAS  Google Scholar 

  • Zhao, Y., Chen, G., & Yuan, Q. (2007). Liquid–liquid two-phase mass transfer in the T-junction microchannels. AIChE Journal, 53, 3042–3053.

    Article  CAS  Google Scholar 

  • Zheng, B., Tice, J. D., Roach, L. S., & Ismagilov, R. F. (2004). A droplet-based, composite pdms/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-Ray diffraction. Angewandte Chemie International Edition, 43, 2508–2511.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios A. Tsaoulidis .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsaoulidis, D.A. (2015). Literature Review. In: Studies of Intensified Small-scale Processes for Liquid-Liquid Separations in Spent Nuclear Fuel Reprocessing. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22587-6_2

Download citation

Publish with us

Policies and ethics