Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 347 Accesses

Abstract

The scope of the thesis is to study and develop small-scale processes for ionic liquid-based extractions that can intensify the liquid-liquid separations of the spent nuclear fuel reprocessing cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becht, S., Franke, R., Geißelmann, A., & Hahn, H. (2009). An industrial view of process intensification. Chemical Engineering and Processing: Process Intensification, 48, 329–332.

    Article  CAS  Google Scholar 

  • Cross, W., & Ramshaw, C. (1986). Process intensification: Laminar flow heat transfer. Chemical Engineering Research and Design, 64, 293–301.

    CAS  Google Scholar 

  • Gavriilidis, A., Angeli, P., Cao, E., Yeong, K., & Wan, Y. (2002). Technology and applications of microengineered reactors. Chemical Engineering Research and Design, 80, 3–30.

    Article  CAS  Google Scholar 

  • Hessel, V., Angeli, P., Gavriilidis, A., & Löwe, H. (2005). Gas-liquid and gas-liquid-solid microstructured reactors: Contacting principles and applications. Industrial and Engineering Chemistry Research, 44, 9750–9769.

    Article  CAS  Google Scholar 

  • Kashid, M. N., Gerlach, I., Goetz, S., Franzke, J., Acker, J., Platte, F., et al. (2005). Internal circulation within the liquid slugs of a liquid-liquid slug-flow capillary microreactor. Industrial and Engineering Chemistry Research, 44, 5003–5010.

    Article  CAS  Google Scholar 

  • Porcelli, J. V. (2003). Process intensification-has its time finally come? Chemical Engineering Progress, 99, 50–55.

    Google Scholar 

  • Ramshaw, C. (1983). Higee distillation-an example of process intensification. Chemical Engineering, 389, 13–14.

    Google Scholar 

  • Seddon, K. R., Stark, A., & Torres, M.-J. (2000). Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry, 72, 2275–2287.

    Article  CAS  Google Scholar 

  • Stankiewicz, A. I., & Moulijn, J. A. (2000). Process intensification: Transforming chemical engineering. Chemical Engineering Progress, 96, 22–34.

    CAS  Google Scholar 

  • van Gerven, T., & Stankiewicz, A. (2009). Structure, energy, synergy, time • the fundamentals of process intensification. Industrial and Engineering Chemistry Research, 48, 2465–2474.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios A. Tsaoulidis .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsaoulidis, D.A. (2015). Introduction and Background. In: Studies of Intensified Small-scale Processes for Liquid-Liquid Separations in Spent Nuclear Fuel Reprocessing. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22587-6_1

Download citation

Publish with us

Policies and ethics