Skip to main content

Molecular Pathways in Growth and Survival: Epigenomics

  • Chapter
  • First Online:
Waldenström’s Macroglobulinemia

Abstract

Epigenetics refers to those heritable changes in gene expression that are not induced by DNA sequence aberrations. One of the most well-defined epigenetic markers is histone acetylation which has been shown to be deregulated in clonal disorders, including both solid tumors and B-cell malignancies, such as Waldenstrom’s Macroglobulinemia (WM). Importantly, recent evidences have suggested that WM cells present with an aberrant histone acetylation status, and this may be due to deregulated microRNA profiling within the WM tumor clone, thus providing the preclinical support for using miRNA-based therapies in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waddington CH. Preliminary notes on the development of the wings in normal and mutant strains of drosophila. Proc Natl Acad Sci U S A. 1939;25(7):299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roccaro AM, Sacco A, Jia X, et al. microRNA-dependent modulation of histone acetylation in Waldenstrom macroglobulinemia. Blood. 2010;116(9):1506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roccaro AM, Sacco A, Chen C, et al. microRNA expression in the biology, prognosis, and therapy of Waldenstrom macroglobulinemia. Blood. 2009;113(18):4391–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  5. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Article  CAS  PubMed  Google Scholar 

  6. Roldo C, Missiaglia E, Hagan JP, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol. 2006;24(29):4677–84.

    Article  CAS  PubMed  Google Scholar 

  7. Xie X, Lu J, Kulbokas EJ, et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature. 2005;434(7031):338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A. 2004;101(32):11755–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eis PS, Tam W, Sun L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A. 2005;102(10):3627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rai D, Karanti S, Jung I, Dahia PL, Aguiar RC. Coordinated expression of microRNA-155 and predicted target genes in diffuse large B-cell lymphoma. Cancer Genet Cytogenet. 2008;181(1):8–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mitsiades CS, Mitsiades NS, Munshi NC, Richardson PG, Anderson KC. The role of the bone microenvironment in the pathophysiology and therapeutic management of multiple myeloma: interplay of growth factors, their receptors and stromal interactions. Eur J Cancer. 2006;42(11):1564–73.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Roccaro AM, Rombaoa C, et al. LNA-mediated anti-miR-155 silencing in low-grade B-cell lymphomas. Blood. 2012;120(8):1678–86.

    Article  CAS  PubMed  Google Scholar 

  13. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128(4):669–81.

    Article  CAS  PubMed  Google Scholar 

  14. Mack GS. Epigenetic cancer therapy makes headway. J Natl Cancer Inst. 2006;98(20):1443–4.

    Article  PubMed  Google Scholar 

  15. Garzon R, Liu S, Fabbri M, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood. 2009;113(25):6411–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noonan EJ, Place RF, Pookot D, et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene. 2009;28(14):1714–24.

    Article  CAS  PubMed  Google Scholar 

  17. Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A. 2007;104(40):15805–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Varambally S, Cao Q, Mani RS, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322(5908):1695–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Friedman JM, Liang G, Liu CC, et al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 2009;69(6):2623–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo M. Roccaro MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sacco, A., Moschetta, M., Manier, S., Rossi, G., Ghobrial, I.M., Roccaro, A.M. (2017). Molecular Pathways in Growth and Survival: Epigenomics. In: Leblond, V., Treon, S., Dimoploulos, M. (eds) Waldenström’s Macroglobulinemia. Springer, Cham. https://doi.org/10.1007/978-3-319-22584-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22584-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22583-8

  • Online ISBN: 978-3-319-22584-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics