Skip to main content

Signal Inhibitors in Waldenstrom’s Macroglobulinemia

  • Chapter
  • First Online:
Waldenström’s Macroglobulinemia

Abstract

Whole genome sequencing has identified actionable mutations in MYD88 and CXCR4 in lymphoplasmacytic cells from Waldenstrom’s Macroglobulinemia (WM) patients that promote multiple survival cascades that include Bruton’s Tyrosine Kinase (BTK), PI3Kδ/AKT, and ERK1/2. Transcriptome studies have also identified aberrations in MYD88, CXCR4, and BCL2 survival signaling. Novel treatment options for WM include inhibitors that target BTK, PI3Kδ/AKT, CXCR4, and BCL2. Ibrutinib, an inhibitor of BTK, has shown high rates of activity and durable responses in relapsed/refractory WM patients. Both MYD88 and CXCR4 tumor mutation status impact ibrutinib response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33.

    Article  CAS  PubMed  Google Scholar 

  2. HunterZR XL, YangG ZY, LiuX CY, et al. The genomic landscape of Waldenstöm’s macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123:1637–46.

    Article  Google Scholar 

  3. Yang G, Zhou Y, Liu X, Xu L, Cao Y, Manning RJ, et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia. Blood. 2013;122:1222–32.

    Article  CAS  PubMed  Google Scholar 

  4. Advani R, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractor B-cell malignancies. J Clin Oncol. 2013;31:88–94.

    Article  CAS  PubMed  Google Scholar 

  5. Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated patients with Waldenström’s macroglobulinemia. N Engl J Med. 2015;372:1430–40.

    Article  CAS  PubMed  Google Scholar 

  6. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369:32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369:507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Treon SP, How I. Treat Waldenstrom’s macroglobulinemia. Blood. 2015;126:721–32.

    Article  CAS  PubMed  Google Scholar 

  9. Dimopoulos M, Kastritis E, Owen R, et al. Treatment recommendations for patients with Waldenström’s macroglobulinemia (WM) and related disorders: consensus from the seventh international workshop on WM. Blood. 2014;124:1404–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Treon SP, Xu L, Hunter ZR. MYD88 Mutations and response to ibrutinib in Waldenstrom’s macroglobulinemia. N Engl J Med. 2015;373:584–6.

    Article  CAS  PubMed  Google Scholar 

  11. Dotta L, Tassone L, Badolato R. Clinical and genetic features of Warts, Hypogammaglobulinemia, Infections and Myelokathexis (WHIM) syndrome. Curr Mol Med. 2011;11:317–25.

    Article  CAS  PubMed  Google Scholar 

  12. Treon SP, Cao Y, Xu L, et al. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom’s macroglobulinemia. Blood. 2014;123:2791–6.

    Article  CAS  PubMed  Google Scholar 

  13. Cao Y, Hunter ZR, Liu X, et al. The WHIM-like CXCR4S338X somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s macroglobulinemia. Leukemia. 2015;29:169–76.

    Article  PubMed  Google Scholar 

  14. Cao Y, Hunter ZR, Liu X, Xu L, Chen J, Tsakmaklis N, et al. CXCR4 WHIM-like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant MYD88L265P-directed survival signaling in Waldenstrom macroglobulinemia cells. Br J Haematol. 2015;168:701–7.

    Article  CAS  PubMed  Google Scholar 

  15. Rocarro AM, Saco A, Jimenez C, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood. 2014;123:4129–31.

    Google Scholar 

  16. Furman R, Bilotti E, Graef T. Single-agent ibrutinib demonstrates long-term activity and safety in patients with relapsed/refractory Waldenstrom’s macroglobulinemia. Proc Eur Hematol Assoc. 2015; Abstract PB1786.

    Google Scholar 

  17. Dimopoulos M, Trotman J, Tedeschi A, et al. Ibrutinib therapy in rituximab-refractory patients with Waldenström’s macroglobulinemia: initial results from an international, multicenter, open-label phase 3 substudy (INNOVATETM). Proc Am Soc Hematol. 2015; Abstract 2745.

    Google Scholar 

  18. Yang G, Buhrlage S, tan L, et al. HCK is a highly relevant target of ibrutinib in MYD88 mutated Waldenstrom’s macroglobulinemia and diffuse large B-cell lymphoma. Proc Am Soc Hematol. 2015; Abstract 705.

    Google Scholar 

  19. Yang G, Liu X, Zhou Y, et al. PI3K/AKT pathway is activated by MYD88 L265P and use of PI3K-delta inhibitors induces robust tumor cell killing in Waldenstrom’s macroglobulinemia. Blood. 2013;121: Abstract 4255.

    Google Scholar 

  20. Leleu X, Jia X, Runnels J, et al. The akt pathway regulates survival and homing in Waldenstrom macroglobulinemia. Blood. 2007;110:4417–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghobrial IM, Witzig TE, Gertz M, et al. Long-term results of the phase II trial of the oral mTOR inhibitor everolimus (RAD001) in relapsed or refractory Waldenstrom macroglobulinemia. Am J Hematol. 2014;89(3):237–42.

    Article  CAS  PubMed  Google Scholar 

  22. Treon SP, Tripsas CK, Meid K, et al. Prospective, multicenter study of the MTOR inhibitor everolimus (RAD001) as primary therapy in Waldenstrom’s macroglobulinemia. Blood. 2013;122: Abstract 1822.

    Google Scholar 

  23. Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, et al. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370(11):1008–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lim KH, Barton GM, Staudt LM. Oncogenic MYD88 mutants require toll-like receptors. Proc Am Assoc Cancer Res. 2013; Abstract 2332.

    Google Scholar 

  25. Brenner L, Arbeit RD, Sullivan T. IMO-8400, an antagonist of toll-like receptors 7, 8, and 9, in development for genetically defined B-cell lymphomas: safety and activity in phase 1 and phase 2 clinical trials. Proc Am Soc Hematol. 2014; Abstract 3101.

    Google Scholar 

  26. Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470(7332):115–21.

    Article  CAS  PubMed  Google Scholar 

  27. Lim KH, Romero DL, Chaudhary D, et al. IRAK4 kinase as a novel therapeutic target in the ABC subtype of diffuse large B cell lymphoma; Proc Am Soc Hematol. 2012; Abstract 62.

    Google Scholar 

  28. Burhlage S. Kinome targets and inhibitors. 8th International Workshop on Waldenstrom’s Macroglobulinemia. August 14–16, 2014; Abstract 27.

    Google Scholar 

  29. Chng WJ, Schop RF, Price-Troska T, et al. Gene-expression profiling of Waldenström macroglobulinemia reveals a phenotype more similar to chronic lymphocytic leukemia than multiple myeloma. Blood. 2006;108:2755–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hunter ZR, Xu L, Yang G, Tsakmaklis N, et al. Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenström macroglobulinemia. Blood. 2016;128(6):827–38.

    Article  CAS  PubMed  Google Scholar 

  31. Cao Y, Yang G, Hunter ZR, et al. The BCL2 antagonist ABT-199 triggers apoptosis, and augments ibrutinib and idelalisib mediated cytotoxicity in CXCR4Wild-type and CXCR4WHIM mutated Waldenstrom macroglobulinaemia cells. Br J Haematol. 2015;170(1):134–8.

    Article  CAS  PubMed  Google Scholar 

  32. Davids MS, Seymour JF, Gerecitano JF, et al. Phase I study of ABT-199 (GDC-0199) in patients with relapsed/refractory non-Hodgkin lymphoma: responses observed in diffuse large B-cell (DLBCL) and follicular lymphoma at higher cohort doses. J Clin Oncol. 2015; 32(5s): Abstract 8522.

    Google Scholar 

  33. McDermott DH, Liu Q, Ulrick J, et al. The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. Blood. 2011;118:4957–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tam C, Grigg AP, Opat S, et al. The BTK inhibitor, Bgb-3111, is safe, tolerable, and highly active in patients with relapsed/refractory B-cell malignancies: initial report of a Phase 1 first-in-human trial. Blood. 2015;126:Abst 832.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Treon MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Treon, S.P., Yang, G., Hunter, Z.R., Castillo, J.J. (2017). Signal Inhibitors in Waldenstrom’s Macroglobulinemia. In: Leblond, V., Treon, S., Dimoploulos, M. (eds) Waldenström’s Macroglobulinemia. Springer, Cham. https://doi.org/10.1007/978-3-319-22584-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22584-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22583-8

  • Online ISBN: 978-3-319-22584-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics