Skip to main content

Waldenström’s Macroglobulinemia Immunophenotype

  • Chapter
  • First Online:
Book cover Waldenström’s Macroglobulinemia

Abstract

Multiparametric Flow Cytometry (MFC) for Immunophenotyping is a very useful tool for diagnosis of Waldenstrom’s macroglobulinemia (WM). It can be used for the distinction between different entities that can be responsible for an IgM monoclonal component, including IgM monoclonal gammopathy undetermined significance (MGUS), asymptomatic WM, and symptomatic WM, as well as other close B-cell lymphoproliferative disorders, such as chronic lymphocytic leukemia, marginal zone lymphoma and IgM multiple myeloma. The identification and quantification of a clonal cell population with a typical WM phenotype is almost diagnostic of this disorder. Clonal WM lymphocytes are characterized by the constant expression of pan-B markers (CD19, CD20, CD22, CD24) and surface immunoglobulin, and are usually positive for FMC7, CD25, CD27, CD45RA, and BCL-2. Moreover, these lymphocytes are almost always negative for CD103, CD11c, CD10 antigens, and frequently negative for CD5 and CD23. Plasma cells present in WM are characterized by an immunophenotype indistinguishable from normal plasma cells, although they belong to the tumor clone. Immunophenotyping also helps to evaluate the response of the disease to the therapy, and it is probably a better monitoring parameter that the M-component, the usual way to evaluate the disorder outcome. In this work, all these concepts are reviewed in detail to help in the comprehension of the use of MFC in WM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of the haematopoietic and tymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008.

    Google Scholar 

  2. Thieblemont C, Felman P, Callet-Bauchu E, Traverse-Glehen A, Salles G, Berger F, et al. Splenic marginal-zone lymphoma: a distinct clinical and pathological entity. Lancet Oncol. 2003;4(2):95–103.

    Article  CAS  PubMed  Google Scholar 

  3. Rizzo D, Chauzeix J, Trimoreau F, Woillard JB, Genevieve F, Bouvier A, et al. IgM peak independently predicts treatment-free survival in chronic lymphocytic leukemia and correlates with accumulation of adverse oncogenetic events. Leukemia. 2015;29(2):337–45.

    Article  CAS  PubMed  Google Scholar 

  4. Rawstron AC, Orfao A, Beksac M, Bezdickova L, Brooimans RA, Bumbea H, et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica. 2008;93(3):431–8.

    Article  PubMed  Google Scholar 

  5. Paiva B, Montes MC, Garcia-Sanz R, Ocio EM, Alonso J, de las Heras N, et al. Multiparameter flow cytometry for the identification of the Waldenstrom’s clone in IgM-MGUS and Waldenstrom’s Macroglobulinemia: new criteria for differential diagnosis and risk stratification. Leukemia. 2014;28(1):166–73.

    Article  CAS  PubMed  Google Scholar 

  6. San Miguel JF, Vidriales MB, Ocio E, Mateo G, Sanchez-Guijo F, Sanchez ML, et al. Immunophenotypic analysis of Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  7. Morice WG, Chen D, Kurtin PJ, Hanson CA, McPhail ED. Novel immunophenotypic features of marrow lymphoplasmacytic lymphoma and correlation with Waldenstrom’s macroglobulinemia. Modern Pathol. 2009;22(6):807–16.

    CAS  Google Scholar 

  8. Owen RG, Johnson SA, Morgan GJ. Waldenstrom’s macroglobulinaemia: laboratory diagnosis and treatment. Hematol Oncol. 2000;18(2):41–9.

    Article  CAS  PubMed  Google Scholar 

  9. Paiva B, Corchete LA, Vidriales MB, Garcia-Sanz R, Perez JJ, Aires-Mejia I, et al. The cellular origin and malignant transformation of Waldenstrom’s macroglobulinemia. Blood. 2015;125(15):2370–80.

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Sanz R, Ocio E, Caballero A, Magalhaes RJ, Alonso J, Lopez-Anglada L, et al. Post-treatment bone marrow residual disease > 5% by flow cytometry is highly predictive of short progression-free and overall survival in patients with Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2011;11(1):168–71.

    Article  CAS  PubMed  Google Scholar 

  11. Varghese AM, Rawstron AC, Ashcroft AJ, Moreton P, Owen RG. Assessment of bone marrow response in Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma. 2009;9(1):53–5.

    Article  PubMed  Google Scholar 

  12. Hunter ZR, Branagan AR, Manning R, Patterson CJ, Santos DD, Tournilhac O, et al. CD5, CD10, and CD23 expression in Waldenstrom’s macroglobulinemia. Clin Lymphoma. 2005;5(4):246–9.

    Article  CAS  PubMed  Google Scholar 

  13. Roberts MJ, Chadburn A, Ma S, Hyjek E, Peterson LC. Nuclear protein dysregulation in lymphoplasmacytic lymphoma/waldenstrom macroglobulinemia. Am J Clin Pathol. 2013;139(2):210–9.

    Article  PubMed  Google Scholar 

  14. Ocio EM, Hernandez JM, Mateo G, Sanchez ML, Gonzalez B, Vidriales B, et al. Immunophenotypic and cytogenetic comparison of Waldenstrom’s macroglobulinemia with splenic marginal zone lymphoma. Clin Lymphoma. 2005;5(4):241–5.

    Article  PubMed  Google Scholar 

  15. van Dongen JJ, Lhermitte L, Bottcher S, Almeida J, van der Velden VH, Flores-Montero J, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26(9):1908–75.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Costa ES, Pedreira CE, Barrena S, Lecrevisse Q, Flores J, Quijano S, et al. Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: a step forward in the standardization of clinical immunophenotyping. Leukemia. 2010;24(11):1927–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. da Costa ES, Peres RT, Almeida J, Lecrevisse Q, Arroyo ME, Teodosio C, et al. Harmonization of light scatter and fluorescence flow cytometry profiles obtained after staining peripheral blood leucocytes for cell surface-only versus intracellular antigens with the Fix & Perm reagent. Cytometry B Clin Cytom. 2010;78(1):11–20.

    PubMed  Google Scholar 

  18. Pedreira CE, Costa ES, Barrena S, Lecrevisse Q, Almeida J, van Dongen JJ, et al. Generation of flow cytometry data files with a potentially infinite number of dimensions. Cytometry A. 2008;73(9):834–46.

    Article  PubMed  Google Scholar 

  19. Pedreira CE, Costa ES, Lecrevisse Q, van Dongen JJ, Orfao A. Overview of clinical flow cytometry data analysis: recent advances and future challenges. Trends Biotechnol. 2013;31(7):415–25.

    Article  CAS  PubMed  Google Scholar 

  20. Kalina T, Flores-Montero J, van der Velden VH, Martin-Ayuso M, Bottcher S, Ritgen M, et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26(9):1986–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Landau DA, Carter SL, Getz G, Wu CJ. Clonal evolution in hematological malignancies and therapeutic implications. Leukemia. 2014;28(1):34–43.

    Article  CAS  PubMed  Google Scholar 

  22. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152(4):714–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Walker BA, Wardell CP, Melchor L, Brioli A, Johnson DC, Kaiser MF, et al. Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia. 2014;28(2):384–90.

    Article  PubMed  Google Scholar 

  24. Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–46.

    Article  CAS  PubMed  Google Scholar 

  25. Poulain S, Roumier C, Galiegue-Zouitina S, Daudignon A, Herbaux C, Aiijou R, et al. Genome wide SNP array identified multiple mechanisms of genetic changes in Waldenstrom macroglobulinemia. Am J Hematol. 2013;88(11):948–54.

    Article  CAS  PubMed  Google Scholar 

  26. Roccaro AM, Sacco A, Jimenez C, Maiso P, Moschetta M, Mishima Y, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood. 2014;123(26):4120–31.

    Article  CAS  PubMed  Google Scholar 

  27. Tournilhac O, Santos DD, Xu L, Kutok J, Tai YT, Le Gouill S, et al. Mast cells in Waldenstrom’s macroglobulinemia support lymphoplasmacytic cell growth through CD154/CD40 signaling. Ann Oncol. 2006;17(8):1275–82.

    Article  CAS  PubMed  Google Scholar 

  28. Gertz MA. Waldenstrom macroglobulinemia: 2012 update on diagnosis, risk stratification, and management. Am J Hematol. 2012;87(5):503–10.

    Article  CAS  PubMed  Google Scholar 

  29. Owen RG, Treon SP, Al-Katib A, Fonseca R, Greipp PR, McMaster ML, et al. Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol. 2003;30(2):110–5.

    Article  PubMed  Google Scholar 

  30. Dimopoulos MA, Kyle RA, Anagnostopoulos A, Treon SP. Diagnosis and management of Waldenstrom’s macroglobulinemia. J Clin Oncol. 2005;23(7):1564–77.

    Article  PubMed  Google Scholar 

  31. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33.

    Article  CAS  PubMed  Google Scholar 

  32. Jimenez C, Sebastian E, Chillon MC, Giraldo P, Mariano HJ, Escalante F, et al. MYD88 L265P is a marker highly characteristic of, but not restricted to Waldenstrom’s macroglobulinemia. Leukemia. 2013;27(8):1722–8.

    Article  CAS  PubMed  Google Scholar 

  33. Landgren O, Staudt L. MYD88 L265P somatic mutation in IgM MGUS. N Engl J Med. 2012;367(23):2255–6. author reply 6–7.

    Article  CAS  PubMed  Google Scholar 

  34. Varettoni M, Arcaini L, Zibellini S, Boveri E, Rattotti S, Riboni R, et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood. 2013;121(13):2522–8.

    Article  CAS  PubMed  Google Scholar 

  35. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470(7332):115–9.

    Article  CAS  PubMed  Google Scholar 

  36. Morel P, Duhamel A, Gobbi P, Dimopoulos MA, Dhodapkar MV, McCoy J, et al. International prognostic scoring system for Waldenstrom macroglobulinemia. Blood. 2009;113(18):4163–70.

    Article  CAS  PubMed  Google Scholar 

  37. Perez-Persona E, Vidriales MB, Mateo G, Mateos MV, Garcia A, Galende J, et al. New criteria to identify risk of progression in smoldering multiple myeloma: multiparametric flow cytometry analysis of bone marrow plasma cells. Haematologica. 2006;91(S1):194–5.

    Google Scholar 

  38. Paiva B, Vidriales MB, Mateo G, Perez JJ, Montalban MA, Sureda A, et al. The persistence of immunophenotypically normal residual bone marrow plasma cells at diagnosis identifies a good prognostic subgroup of symptomatic multiple myeloma patients. Blood. 2009;114(20):4369–72.

    Article  CAS  PubMed  Google Scholar 

  39. Perez-Persona E, Vidriales MB, Mateo G, Garcia-Sanz R, Mateos MV, de Coca AG, et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood. 2007;110(7):2586–92.

    Article  CAS  PubMed  Google Scholar 

  40. Paiva B, Vidriales MB, Perez JJ, Lopez-Berges MC, Garcia-Sanz R, Ocio EM, et al. The clinical utility and prognostic value of multiparameter flow cytometry immunophenotyping in light-chain amyloidosis. Blood. 2011;117(13):3613–6.

    Article  CAS  PubMed  Google Scholar 

  41. Kyle RA, Therneau TM, Rajkumar SV, Remstein ED, Offord JR, Larson DR, et al. Long-term follow-up of IgM monoclonal gammopathy of undetermined significance. Blood. 2003;102(10):3759–64.

    Article  CAS  PubMed  Google Scholar 

  42. Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K, et al. Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood. 2007;109(4):1692–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Larsen JT, Kumar SK, Dispenzieri A, Kyle RA, Katzmann JA, Rajkumar SV. Serum free light chain ratio as a biomarker for high-risk smoldering multiple myeloma. Leukemia. 2013;27(4):941–6.

    Article  CAS  PubMed  Google Scholar 

  44. Katzmann JA, Clark R, Kyle RA, Larson DR, Therneau TM, Melton III LJ, et al. Suppression of uninvolved immunoglobulins defined by heavy/light chain pair suppression is a risk factor for progression of MGUS. Leukemia. 2013;27(1):208–12.

    Article  CAS  PubMed  Google Scholar 

  45. Owen RG, Kyle RA, Stone MJ, Rawstron AC, Leblond V, Merlini G, et al. Response assessment in Waldenstrom macroglobulinaemia: update from the VIth International Workshop. Br J Haematol. 2013;160(2):171–6.

    Article  PubMed  Google Scholar 

  46. Barakat FH, Medeiros LJ, Wei EX, Konoplev S, Lin P, Jorgensen JL. Residual monotypic plasma cells in patients with Waldenstrom macroglobulinemia after therapy. Am J Clin Pathol. 2011;135(3):365–73.

    Article  PubMed  Google Scholar 

  47. Treon SP, Hunter ZR, Matous J, Joyce RM, Mannion B, Advani R, et al. Multicenter clinical trial of bortezomib in relapsed/refractory Waldenstrom’s macroglobulinemia: results of WMCTG Trial 03-248. Clin Cancer Res. 2007;13(11):3320–5.

    Article  CAS  PubMed  Google Scholar 

  48. Strauss SJ, Maharaj L, Hoare S, Johnson PW, Radford JA, Vinnecombe S, et al. Bortezomib therapy in patients with relapsed or refractory lymphoma: potential correlation of in vitro sensitivity and tumor necrosis factor alpha response with clinical activity. J Clin Oncol. 2006;24(13):2105–12.

    Article  CAS  PubMed  Google Scholar 

  49. Ghobrial IM, Witzig TE, Gertz M, LaPlant B, Hayman S, Camoriano J, et al. Long-term results of the phase II trial of the oral mTOR inhibitor everolimus (RAD001) in relapsed or refractory Waldenstrom Macroglobulinemia. Am J Hematol. 2014;89(3):237–42.

    Article  CAS  PubMed  Google Scholar 

  50. Treon SP, Agus TB, Link B, Rodrigues G, Molina A, Lacy MQ, et al. CD20-directed antibody-mediated immunotherapy induces responses and facilitates hematologic recovery in patients with Waldenstrom’s macroglobulinemia. J Immunother. 2001;24(3):272–9.

    Article  CAS  Google Scholar 

  51. Moreton P, Kennedy B, Lucas G, Leach M, Rassam SM, Haynes A, et al. Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after Alemtuzumab therapy is associated with prolonged survival. J Clin Oncol. 2005;23(13):2971–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Alicia Antón, Montserrat Ruano, and Rebeca Maldonado for their technical assistance. This work has been partially supported by the grant PI12/02311 from the Spanish “Instituto de Salud Carlos III (ISCIII)” and GRS 847/A/13 from the Consejería de Sanidad de la Junta de Castilla y León and the Cooperative Research Thematic Network (RTICC) RD12/0036/0046-0048-0058 and Solórzano FS/23-2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón García-Sanz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Puig, N., Ocio, E.M., Jiménez, C., Paiva, B., Miguel, J.F.S., García-Sanz, R. (2017). Waldenström’s Macroglobulinemia Immunophenotype. In: Leblond, V., Treon, S., Dimoploulos, M. (eds) Waldenström’s Macroglobulinemia. Springer, Cham. https://doi.org/10.1007/978-3-319-22584-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22584-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22583-8

  • Online ISBN: 978-3-319-22584-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics