Skip to main content

Distributed and Efficient One-Class Outliers Detection Classifier in Wireless Sensors Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 9071))

Abstract

In the data mining literature, many outlier detection models can be found. However, these models are not suitable for the energy constrained WSNs because they assumed the whole data is available in a central location for further analysis. In this paper, we propose Distributed and Efficient One-class Outliers Detection Classifier (DEOODC) based on Mahalanobis Kernel used for outlier detection in wireless sensor networks (WSNs). For this case, the task amounts to create a useful model based on KPCA to recognize data as normal or outliers. Recently, Kernel Principal component analysis (KPCA) has used for nonlinear case which can extract higher order statistics. Kernel PCA (KPCA) mapping the data onto another feature space and using nonlinear function. On account of the attractive capability, KPCA-based methods have been extensively investigated, and have showed excellent performance. Within this setting, we propose Kernel Principal Component Analysis based Mahalanobis kernel as a new outlier detection method using Mahalanobis distance to implicitly calculate the mapping of the data points in the feature space so that we can separate outlier points from normal pattern of data distribution. The use of KPCA based Mahalanobis kernel on real word data obtained from Intel Berkeley are reported showing that the proposed method performs better in finding outliers in wireless sensor networks when compared to the One-Class SVM detection approach. All computation are done in the original space, thus saving computing time using Mahalanobis Kernel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Naumowicz, T., Freeman, T., Heil, R., Calsyn, A., Hellmich, E., Brandle, A., Guilford, T., Schiller, J.: Autonomous monitoring of vulnerable habitats using a wireless sensor network. In: Proceedings of the Workshop on Real-World Wireless Sensor Networks, REALWSN 2008, Glasgow, Scotland (2008)

    Google Scholar 

  2. Marcelloni, F., Vecchio, M.: An efficient lossless compression algorithm for tiny nodes of monitoring wireless sensor networks. Comput. J. 52(8), 969–987 (2009)

    Article  Google Scholar 

  3. Akyildiz, A., Ian, F., Melodia, T., Kaushik, R.: A survey on wireless multimedia sensor networks. J. Comput. Netw.: Int. J. Comput. Telecommun. Netw. 51(4), 921–960 (2007). Inc. New York, NY, USA, United State

    Article  Google Scholar 

  4. Ghorbel, O., Ayedi, W., Jmal, M.W., Abid, M.: Images compression and transmission in WSN: Performances Analysis. In: 14th International Conference on Communication Technology, Chine (2012)

    Google Scholar 

  5. Zhang, Y., Meratnia, N., Havinga, P.: Outlier detection Techniques for wireless sensor networks: A survey, pp. 11–20 (2008)

    Google Scholar 

  6. Lee, J.-M., Yoo, C., Choi, S.W., Vanrolleghem, P.A., Lee, I.-B.: Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 59(1), 223–234 (2004)

    Article  Google Scholar 

  7. Choi, S.W., Lee, C., Lee, J.M., Park, J.H., Lee, I.B.: Fault detection and identification of nonlinear processes based on kernel PCA. Chemometr. Intell. Lab. Syst. 75(1), 55–67 (2005)

    Article  Google Scholar 

  8. Scholkopf, B., Smola, A., Muller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  9. Kapitanova, K., Son, S.H., Kang, K.D.: Event detection in wireless sensor networks. In: Second International Conference, ADHOCNETS 2010, Victoria, BC, Canada, August 2010

    Google Scholar 

  10. Zhang, Y., Meratnia, N.P., Havinga, J.M.: Distributed online outlier detection in wireless sensor networks using ellipsoidal support vector machine. Ad Hoc Networks, December 2012

    Google Scholar 

  11. Koupaie, H.M., Ibrahim, S., Hosseinkhani, J.: Outlier detection in stream data by machine learning and feature selection methods. Int. J. Adv. Comput. Sci. Inf. Technol. (IJACSIT) 2, 17–24 (2013)

    Google Scholar 

  12. Rajasegarar, S., Leckie, C., Palaniswami, M., Bezdek, J.C.: Quarter sphere based distributed anomaly detection in wireless sensor networks. In: Proceedings of IEEE International Conference on Communications, pp. 3864–3869 (2007)

    Google Scholar 

  13. Zhang, Y., Hammb, N.A.S., Meratniaa, N., Steinb, A., Van de Voorta, M., Havingaa, P.J.M.: Statistics-based outlier detection for wireless sensor networks. Int. J. Geogr. Inf. Sci. 26(8), 1373–1392 (2012)

    Article  Google Scholar 

  14. Chakour, C., et al.: Adaptive kernel principal component analysis for nonlinear time-varying processes monitoring. In: ICEECA 2012 (2012)

    Google Scholar 

  15. IBRL, Intel Berkely Reseach Lab Dataset (2004). http://db.csail.mit.edu/labdata/1120labdata.html

  16. GStB, Grand-St-Bernard dataset (2007). http://lcav.epfl.ch/cms/lang/en/pid/86035

  17. LUCE, Lausanne Urban Canopy Experiment (2007). http://lcav.epfl.ch/cms/lang/en/1122pid/86035 ed

  18. Werner-Allen, G., Lorin, C.Z.K., Welsh, M., Marcillo, O.: Johnson, J, Ruiz, M., Lees, J.: Deploying a wireless sensors network on an active volcano. IEEE Internet Comput. 10, 18–25 (2006)

    Article  Google Scholar 

  19. Szewezyk, R., Mainwaring, A., Polastre, J., Culler, D.: Analysis of alarge scale habitet monitoring application. In: Proceedings of the second ACM Conference on Embedded Networked Sensors Systems (SenSys), Baltimore (2004)

    Google Scholar 

  20. Verma, K., Kumar, V., Samparthi, S.: Outlier detection of data in wireless sensor networks using kernel density estimation. Int. J. Comput. Appl. 5, 28–32 (2010). Published By Foundation of Computer Science

    Google Scholar 

  21. Nguyen, M.H., Torre, F.: Robust Kernel Principal Component Analysis (2008)

    Google Scholar 

  22. Ding, M., Tian, Z., Xu, H.: Adaptive kernel principal component analysis. Signal Process. 90, 1542–1553 (2010)

    Article  MATH  Google Scholar 

  23. Zheng, W., Zou, C., Zhao, L.: An improved algorithm for kernel principal component analysis. Neural Process. 22, 49–56 (2005)

    Article  Google Scholar 

  24. Franc, Vojtěch, Hlavč, Václav: Greedy Algorithm for a Training Set Reduction in the Kernel Methods. In: Petkov, Nicolai, Westenberg, Michel A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 426–433. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Hoffmann, H.: Kernel PCA for novelty detection. Pattern Recogn. 40, 863–874 (2007)

    Article  MATH  Google Scholar 

  26. Xie, Z., Quirino, T., Shyu, M.-L., Chen, S.-C., Chang, L.: UNPCC: a novel unsupervised classification scheme for network intrusion detection. Presented at the Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence (2006)

    Google Scholar 

  27. Hotelling, H.: Analysis of a complex of statistical variables with principal components. J. Educ. Psychol. 24, 498–520 (1933)

    Article  Google Scholar 

  28. Szewezyk, R., Mainwaring, A., Polastre, J., Culler, D.: Analysis of alarge scale habitet monitoring application. In: Proceedings of the Second ACM Conference en Embedded Networked Sensors Systems (SenSys), Baltimore (2004)

    Google Scholar 

  29. Werner-Allen, G., Lorin, K.C.Z., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M., Lees, J.: Deploying a wireless sensors network on an active volcano. IEEE Internet Comput. 10, 18–25 (2006)

    Article  Google Scholar 

  30. Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M., Couach, O., Parlange, M.: SensorScope: out-of-the-box Environmental monitoring. In: Proceeding of the 7th International Conference on Information Processing in Sensor Networks, pp. 332–343, 22–24 April 2008

    Google Scholar 

  31. Vapnik, V.: The nature of statistical learning theory (Information Science and Statistics) (1995)

    Google Scholar 

  32. Scholkopf, B., Platt, J., Shawe-Taylor, J., Smola, J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  Google Scholar 

  33. Tax, D.M., Duin, R.P.: Support vector data description. Machine Learn. 27(4), 45–66 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oussama Ghorbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ghorbel, O., Jmal, M.W., Abid, M., Snoussi, H. (2015). Distributed and Efficient One-Class Outliers Detection Classifier in Wireless Sensors Networks. In: Aguayo-Torres, M., Gómez, G., Poncela, J. (eds) Wired/Wireless Internet Communications. WWIC 2015. Lecture Notes in Computer Science(), vol 9071. Springer, Cham. https://doi.org/10.1007/978-3-319-22572-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22572-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22571-5

  • Online ISBN: 978-3-319-22572-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics