Skip to main content

Momentum-Control System Array Architectures

  • Chapter
Book cover Spacecraft Momentum Control Systems

Part of the book series: Space Technology Library ((SPTL,volume 1010))

Abstract

This chapter provides the analysis tools and fundamental theory for the design of an array architecture consisting of momentum devices. First, the properties of the actuator alignments and their effect on shaping the performance envelope of the momentum-control system are discussed. A survey of common array types for RWA, CMG, and mixed arrays follows. A discussion of performance metrics and methods used to optimize the array architecture concludes the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The avoidance of SGCMG singularities for an array of two or more VSCMGs with linearly independent gimbal axes assumes that the rotors do not reach their maximum speed or zero. With sufficiently many rotors at maximum speed, the array can no longer provide rotor accelerations to aid in SGCMG singularity avoidance. Similarly, when enough rotors have very little momentum, the gyroscopic torque vanishes, worsening the singularities.

References

  1. F. Markley, R. Reynolds, F. Liu, K. Lebsock, Maximum torque and momentum envelopes for reaction wheel arrays. AIAA J. Guid. Control. Dyn. 33(5), 1606 (2010)

    Google Scholar 

  2. W. Chubb, H. Kennel, C. Rupp, S. Seltzer, Flight performance of skylab attitude and pointing control system. AIAA J. Spacecr. Rocket. 12(4), 220 (1975)

    Google Scholar 

  3. M. Carpenter, M. Peck, Reducing base reactions with gyroscopic actuation of space-robotic systems. IEEE Trans. Robot. 25(6), 1262 (2009)

    Google Scholar 

  4. D. Cunningham, G. Driskill, A torque balance control moment gyroscope assembly for astronaut maneuvering, in NASA. Ames Research Center 6th Aerospace Mechanics Symposium (SEE N72-26377 17-15), 1972, pp. 121–126

    Google Scholar 

  5. ”C-1 - Lit Motors.” Lit Motors C1 (2013), http://litmotors.com/c1/. Accessed 13 Sept 2015.

  6. H. Kurokawa, A geometric study of single gimbal control moment gyros (singularity problems and steering law). Technical Report 175, Agency of Industrial Technology and Science, Japan, 1998

    Google Scholar 

  7. J. Rodden, Attitude control system lectures. Lecture Notes (1980)

    Google Scholar 

  8. E. Tokar, V. Platonov, Singular surfaces in unsupported gyrodyne systems. Cosm. Res. 16, 547 (1979)

    Google Scholar 

  9. H. Kurokawa, Survey of theory and steering laws of single-gimbal control moment gyros. AIAA J. Guid. Control. Dyn. 30(5), 1331 (2007)

    Google Scholar 

  10. T. Sands, J. Kim, B. Agrawal, 2h singularity-free momentum generation with non-redundant single gimbaled control moment gyroscopes, in 45th IEEE Conference on Decision and Control, 2006, pp. 1551–1556

    Google Scholar 

  11. H. Yoon, P. Tsiotras, Singularity analysis of variable-speed control moment gyros. AIAA J. Guid. Control. Dyn. 27(3), 374 (2004)

    Google Scholar 

  12. M. Karpenko, S. Bhatt, N. Bedrossian, I. Ross, Flight implementation of shortest-time maneuvers for imaging satellites. AIAA J. Guid. Control. Dyn. 37(4), 1069 (2014)

    Google Scholar 

  13. I. Ross, M. Karpenko, A review of pseudospectral optimal control: from theory to flight. Annu. Rev. Control. 36(2), 182 (2012)

    Google Scholar 

  14. H. Kojima, Singularity analysis and steering control laws for adaptive-skew pyramid-type control moment gyros. Elsevier Acta Astronaut. 85, 120 (2013)

    Article  Google Scholar 

  15. J.J. Bonn, M.A. Peck. Dynamic cmg array and method. US Patent 7,561,947, 2009

    Google Scholar 

  16. D. Cornick, Singularity avoidance control laws for single gimbal control moment gyros, in AIAA Guidance, Navigation and Control Conference, 1979

    Google Scholar 

  17. H. Schaub, J. Junkins, CMG singularity avoidance using VSCMG null motion (variable speed control moment gyroscope), in AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Boston, MA, 1998, pp. 213–220

    Google Scholar 

  18. J. Roes, Electro-mechanical energy storage system for space application. Prog. Astronaut. Aeronaut. 3 (1961)

    Google Scholar 

  19. V. Babuska, S. Beatty, B. deBlonk, J. Fausz, A review of technology developments in flywheel attitude control and energy transmission systems, in Proceedings of the IEEE Aerospace Conference, vol. 4, 2004

    Google Scholar 

  20. J. Notti, A. Cormack, W. Klein, Integrated power/attitude control system (ipacs). AIAA J. Spacecr. Rocket. 12(5), 485 (1975)

    Google Scholar 

  21. J. Fausz, D. Richie, Flywheel simultaneous attitude control and energy storage using a vscmg configuration, in Proceedings of the 2000 IEEE International Conference on Control Applications, 2000, pp. 991–995

    Google Scholar 

  22. P. Tsiotras, H. Shen, C. Hall, Satellite attitude control and power tracking with energy/momentum wheels. AIAA J. Guid. Control. Dyn. 24(1), 23 (2001)

    Google Scholar 

  23. H. Yoon, P. Tsiotras, Singularity analysis and avoidance of variable-speed control moment gyros–part ii: power constraint case, in AIAA Guidance, Navigation, and Control Conference, Providence, RI, 2004

    Google Scholar 

  24. K.L. McLallin, R.H. Jansen, J. Fausz, R.D. Bauer, Aerospace flywheel technology development for ipacs applications. Technical Report TM-2001-211093, NASA, 2001

    Google Scholar 

  25. G. Leve, F. Boyarko, N. Fitz-Coy, Optimization in choosing gimbal axis orientations of optimization in choosing gimbal axis orientations of a cmg attitude control system, in AIAA Infotech@Aerospace Conference, Seattle, WA, 6–10 April 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leve, F.A., Hamilton, B.J., Peck, M.A. (2015). Momentum-Control System Array Architectures. In: Spacecraft Momentum Control Systems. Space Technology Library, vol 1010. Springer, Cham. https://doi.org/10.1007/978-3-319-22563-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22563-0_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22562-3

  • Online ISBN: 978-3-319-22563-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics