Skip to main content

Genetic Engineering and Precision Editing of Triticale Genomes

  • Chapter
  • First Online:
Book cover Triticale

Abstract

Plant biotechnology has revolutionized traditional crop development and resulted in steady increase of the per hectare yields of cereals, agronomic performance, and disease resistance of new varieties in the past few decades. According to the Food and Agriculture Organization of the United Nations, the world’s total cereal production has increased from over 1900 million tons in 2002 to over 2300 million tons in 2012 (FAO 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asif M, Eudes F, Goyal A, Amundsen E, Randhawa HS, Spaner D (2013a) Organelle antioxidants improve microspore embryogenesis in wheat and triticale. Vitro Cell Dev Biol—Plant 49:489–497

    Google Scholar 

  • Asif M, Eudes F, Randhawa HS, Amundsen E, Yanke J, Spaner D (2013b) Cefotaxime prevents microbial contamination and improves microspore embryogenesis in wheat and triticale. Plant Cell Rep 32:1637–1646

    Article  CAS  PubMed  Google Scholar 

  • Asif M, Eudes F, Randhawa HS, Amundsen E, Spaner D (2014) Phytosulfokine alpha enhances microspore embryogenesis in both triticale and wheat. Plant Cell Tissue Organ Cult 116:125–130

    Article  CAS  Google Scholar 

  • Atak M, Kaya M, Khawar KM, Saglam S, Özcan S, Ciftci CY (2008) Effect of age on somatic embryogenesis from immature zygotic embryos of 5 Turkish triticale genotypes. Afr J Biotechnol 7(11):1765–1768

    CAS  Google Scholar 

  • Becker D, Jahne A, Zimny J, Lutticke Z, Lörz H (1995) Production of transgenic cereal crops. In: Current issues in plant molecular and cellular biology proceeding 8. International congress on plant tissue and cell culture, Florence, 12–17 June, 1994, Italy, pp 263–269

    Google Scholar 

  • Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300(5620):764 (2)

    Google Scholar 

  • Bińka A, Orczyk W, Nadolska-Orczyk A (2012) The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticale (×Triticosecale Wittmack): role of the binary vector system and selection cassettes. J Appl Genet 53:1–8

    Article  PubMed Central  PubMed  Google Scholar 

  • Birsin MA, Ozgen M (2004) A comparison of callus induction and plant regeneration from different embryo explants of triticale (×Triticosecale Wittmack). Cell Mol Biol Lett 9:353–361

    PubMed  Google Scholar 

  • Bohorova NE, Pfeiffer WH, Mergoum M, Crossa J, Pacheco M, Estanol P (2001) Regeneration potential of CIMMYT durum wheat and triticale varieties from immature embryos. Plant Breed 120:291–295

    Article  CAS  Google Scholar 

  • Bourdon VZ, Ladbrooke A, Wickham D, Lonsdale W, Hardwood (2002) Homozygous wheat plants with increased luciferase activity do not maintain their high level of expression in the next generation. Plant Sci 163: 297–305

    Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chugh A, Eudes F (2007) Translocation and nuclear accumulation of monimer and dimer of HIV-1 Tat basic domain in triticale mesophyll protoplasts. Biochimica et Biophysica Acta 1768:419–426

    Google Scholar 

  • Chugh A, Eudes F (2008) Cellular uptake of cell-penetrating peptides pVEC and transportan in plants. J Pept Sci 14(4):477–481

    Google Scholar 

  • Chugh A, Amundsen E, Eudes F (2009) Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant Cell Rep 28:801–810

    Article  CAS  PubMed  Google Scholar 

  • Chugh A, Eudes F, Shim YS (2010) Cell-penetrating peptides: nanocarrier for macromolecule delivery in living cells. IUBMB Life 62(3):183–193

    Article  CAS  PubMed  Google Scholar 

  • Dornelles ALC, Carvalho FIF, Federizzi LC, Handel CL, Bered F, Sordi MEB, Schneider F (1997) Callus induction and plant regeneration by Brazilian triticale and wheat genotypes. Braz J Genet. doi:10.1590/S0100-84551997000100008

  • Doshi KM, Eudes E, Laroche A, Gaudet D (2007a) Anthocyanin expression in marker free transgenic wheat and triticale embryos. Vitro Cell Dev Biol Plant 43:429–435

    Article  CAS  Google Scholar 

  • Doshi KM, Eudes F, Laroche A, Gaudet D (2007b) Anthocyanin expression in marker free transgenic wheat and triticale embryos. Vitro Cell Dev Biol Plant 43(5):429–435

    Article  CAS  Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424

    Article  CAS  PubMed  Google Scholar 

  • Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33(18):5978–5990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eapen S, Rao PS (1982) Callus induction and plant regeneration from immature embryos of rye and triticale. Plant Cell Tissue Organ Cult 1:221–227

    Article  CAS  Google Scholar 

  • Eapen S, Rao PS (1985) Plant regeneration from immature inflorescence callus culture of wheat, rye and triticale. Euphytica 34:153–159

    Article  Google Scholar 

  • Eggenberger K, Birtalan E, Schröder T, Bräse S, Nick P (2009) Passage of Trojan peptides into plant cells. ChemBioChem 10:2504–2512

    Article  CAS  PubMed  Google Scholar 

  • Eudes F, Acharya S, Laroche A, Selinger LB, Cheng KJ (2003) A novel method to induce direct somatic embryogenesis, secondary embryogenesis and regeneration of fertile green cereal plants. Plant Cell Tissue Organ Cult 73:147–157

    Article  CAS  Google Scholar 

  • Eudes F, Amundsen E (2005) Isolated microspore culture of Canadian 6×triticale cultivars. Plant Cell Tissue Organ Cult 82:233–241

    Article  CAS  Google Scholar 

  • FAO (2013) Cereal supply and demand brief. http://www.fao.org/worldfoodsituation/csdb/en/

  • Felfdi K, Purnhauser L (1992) Induction of regenerating callus cultures from immature embryos of 44 wheat and 3 triticale cultivars. Cereal Res Comm 20:273–277

    Google Scholar 

  • Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Cult 104:301–309

    Article  Google Scholar 

  • Fischer R, Waizenegger K, Kohler R, Brock A (2002) A quantitative validation of fluorophore-labelled cell permeable peptide conjugates: fluorophore and cargo dependence of import. Biochim Biophys Acta 1564:365–374

    Article  CAS  PubMed  Google Scholar 

  • Gadaleta A, Giancaspro A, Blechl AE, Blanco A (2008) A transgenic durum wheat line that is free of marker genes and expresses 1Dy10. J Cereal Sci 48(2):439–445

    Article  CAS  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ganeshan S, Chodaparambil SV, Baga M, Fowler DB, Hucl P, Rossnagel BG, Chibbar RN (2006) In vitro regeneration of cereals based on multiple shoot induction from mature embryos in response to thidiazuron. Plant Cell Tissue Organ Cult 85:63–73

    Article  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goyal BL, Beres B, Randhawa HS, Navabi A, Salmon DF, Eudes F (2011) Yield stability analysis of broadly adaptive triticale germplasm in southern and central Alberta, Canada, for industrial end-use suitability Can. J Plant Sci 91:125–135

    Google Scholar 

  • Greer MS, Kovalchuk I, Eudes F (2009) Ammonium nitrate improves direct somatic embryogenesis and biolistic transformation of Triticum aestivum. N Biotechnol 26(1–2):44–52

    Article  CAS  PubMed  Google Scholar 

  • Hensel G, Kastner C, Oleszczuk S, Riechen J, Kumlehn J (2009) Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int J Plant Genomics, 9 pages

    Google Scholar 

  • Hensel G, Oleszczuk S, Daghma DES, Zimny J, Melzer M, Hensel JK et al (2012) Analysis of T-DNA integration and generative segregation in transgenic winter triticale (×Triticosecale Wittmack). BMC Plant Biol 12:171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hofgen R, Axelsen KA, Kannangara CG, Schüttke I, Pohlenz H-D, Willmitzer L, Grimm B, von Wettstein D (1994) A visible marker for antisense mRNA expression in plants: inhibition of chlorophyll synthesis with a glutamate 1-semialdehyde aminotransferase antisense gene. Proc Natl Acad Sci USA 91:1726–1730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Immonen I (1992) Effect of karyotype on somatic embryogenesis from immature triticale embryos. Plant Breed 109:116–122

    Article  Google Scholar 

  • Immonen S, Robinson J (2000) Stress treatments and ficoll for improving green plant regeneration in triticale anther culture. Plant Sci 150:77–84

    Article  CAS  Google Scholar 

  • Jahne A, Lorz H (1995) Cereal microspore culture. Plant Sci 109:1–12

    Article  Google Scholar 

  • Jin F, Li S, Dang L, Chai W, Li P, Wang NN (2012) PL1 fusion gene: a novel visual selectable marker gene that confers tolerance to multiple abiotic stresses in transgenic tomato. Transgenic Res 21:1057–1070

    Article  CAS  PubMed  Google Scholar 

  • Jones AT (2007) Macropinocytosis: searching for an endocytic identity and a role in the uptake of cell penetrating peptides. J Cell Mol Med 11:670–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karadağa A, Birsin MAVCI, Özgen AM (2013) Transfer of a β-Glucuronidase marker gene to triticale (×Triticosecale Wittmack) via particle bombardment (Biolistic). Method J Agric Sci 19:12–21

    Google Scholar 

  • Kasha KJ, Maluszynski M (2003) Production of doubled haploids in crop plants. An introduction. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 1–4

    Chapter  Google Scholar 

  • Kempe K, Rubtsova M, Gils M (2009) Intein-mediated protein assembly in transgenic wheat: production of active barnase and acetolactate synthase from split genes. Plant Biotechnol J 7:283–297

    Article  CAS  PubMed  Google Scholar 

  • Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci USA 95:7203–7208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lantos C, Jancso M, Pauk J (2005) Microspore culture of small grain cereals. Acta Physiol Plant 27:631–639

    Article  Google Scholar 

  • Lehmann C, Krolow KD (1991) Experiments on haploid production from tetraploid triticales by the Hordeum bulbosum system and anther culture. Cereal Res Commun 19:283–290

    Google Scholar 

  • Letarte J, Simion E, Miner M, Kasha KJ (2006) Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep 24:691–698

    Article  CAS  PubMed  Google Scholar 

  • Li H, Devaux P (2001) Enhancement of microspore culture efficiency of recalcitrant barley genotypes. Plant Cell Rep 20:475–481

    Article  CAS  Google Scholar 

  • Li T, Huang S, Zhou J, Yang B (2013) Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in Rice. Mol Plant 6:781–789

    Article  CAS  PubMed  Google Scholar 

  • Lyznik LA, Hirayama L, Rao KV, Abad A, Hodges TK (1995) Heat-inducible expression of FLP gene in maize cells. Plant J 8(2):177–186

    Article  CAS  PubMed  Google Scholar 

  • Mahfouz MM, Li L, Shamimuzzaman Md, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. PNAS 108(6):2623–2628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10(10):957–963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mano M, Teodosio C, Paiva A, Simoes S, Pedroso de Lima MC (2005) On the mechanisms of the internalization of S413-PV cell penetrating peptide. Biochem J 390:603–612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  CAS  PubMed  Google Scholar 

  • Nadolska-Orczyk A, Przetakiewicz K, Kopera A, Binka and Orczyk W (2005) Efficient method of Agrobacterium mediated transformation for triticale (×Triticosecale Wittmack). J Plant Growth Regul 24:2–10

    Google Scholar 

  • Nakamura C, Keller WA (1982) Callus proliferation and plant regeneration from immature embryos of hexaploid triticale. Zhurnal Pflanzenzuecht 88:137–160

    Google Scholar 

  • Nakase I, Tadokoro A, Kawabata N, Takeuchi T, Katoh H, Hiramoto K, Negishi M, Nomizu M, Suguira Y, Futaki S (2007) Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochem 46:492–501

    Article  CAS  Google Scholar 

  • Nehra NS, Chibbar RN, Leung N, Caswell K, Mallard C, Steinhauer L, Baga M, Kartha KK (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 5:285–297

    Article  CAS  Google Scholar 

  • Nehra NS, Kartha KK, Chibbar RN (1996) Enhanced regeneration system. United States Patent Number 5,589,617, Dec. 31, 1996

    Google Scholar 

  • Oleszczuk S, Sowa S, Zimny J (2004) Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (×Triticosecale Wittmack) cv. Bogo Plant Cell Rep 22:885–893

    CAS  PubMed  Google Scholar 

  • Ostlie KR, Hutchison WD, Hellmich RL (1997) Bt corn and European corn borer. North Central Region Extension Publication NCR 602. University of Minnesota, St. Paul, Minnesota, U.S.A

    Google Scholar 

  • Parmaksiz I, Khawar KM (2006) Plant regeneration by Somatic Embryogenesis from immature seeds of Sternbergia candida Mathew Et T. Baytop, an endangered endemic plant of Turkey. Prop Orn Plants 6:128–133

    Google Scholar 

  • Patel LN, Zaro JL, Shen W-C (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res. doi:10.1007/s11095-007-9303-7

    Google Scholar 

  • Pauk J, Puolimatka M, Toth KL, Monostori T (2000) In vitro androgenesis of triticale in isolated microspore culture. Plant Cell Tissue Organ Cult 61:221–229

    Article  CAS  Google Scholar 

  • Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23(8):967–73

    Google Scholar 

  • Pratap A, Sethi GS, Chaudhary HK (2006) Relative efficiency of anther culture and chromosome elimination techniques for haploid induction in triticale ×wheat and triticale ×triticale hybrids. Euphytica 150:339–345

    Article  CAS  Google Scholar 

  • Przetakiewicz A, Orczyk W, Nadolska-Orczyk A (2003) The effect of auxin on plant regeneration of wheat, barley and triticale. Plant Cell Tissue Organ Cult 73:245–256

    Article  CAS  Google Scholar 

  • Purnhauser L, Gyulai G (1993) Effect of copper on shoot and root regeneration in wheat, triticale, rape and tobacco tissue cultures. Plant Cell Tissue Organ Cult 35:131–139

    Article  CAS  Google Scholar 

  • Purnhauser L, Medgyesy P, Czako M, Dix PJ, Marton L (1987) Stimulation of shoot regeneration in Triticum aestivum and Nicotiana plumbaginifolia Viv. tissue cultures using the ethylene inhibitor AgNO3. Plant Cell Rep 6:1–4

    Article  CAS  PubMed  Google Scholar 

  • Reed J, Privalle L, Powell ML, Meghji M, Dawson J, Dunder E, Suttie J, Wenck A, Launis K, Kramer C, Chang YF, Hansen G, Wright M (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. Vitro Cell Devel Biol-Plant 37: 127–132

    Google Scholar 

  • Reyon D, Khayter C, Regan MR, Joung JK, Sander JD (2012) Current protocols in molecular biology engineering designer transcription activator-like effector nucleases (TALENs). Curr Protoc Mol Biol 12(12):15

    PubMed  Google Scholar 

  • Rosellini D (2012) Selectable markers and reporter genes: a well furnished toolbox for plant science and genetic engineering. Crit Rev Plant Sci 31:401–453

    Article  CAS  Google Scholar 

  • Rubio S, Jouve N, Gonzales JM (2004) Biolistic transfer of the gene uidA and its expression in haploid embryo-like structures of triticale (×Triticosecale Wittmack). Plant Cell, Tissue Organ Cult 77:203–209

    Article  CAS  Google Scholar 

  • Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9(10):2395–2410

    Article  CAS  PubMed  Google Scholar 

  • Sharma GC, Bello LL, Sapra VT, Peterson CM (1981) Callus initiation and plant regeneration from Triticale embryos. Crop Sci 21:113–118

    Article  Google Scholar 

  • Shim YS, Eudes F, Kovalchuk I (2013) dsDNA and protein co-delivery in triticale microspores. Vitro Cell Dev Biol–Plant 49:156–165

    Google Scholar 

  • Shrawat AK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603

    Article  CAS  PubMed  Google Scholar 

  • Soriano M, Cistue´ L, Castillo AM (2007) Enhanced induction of microspore embryogenesis after n-butanol treatment in wheat (Triticum aestivum L.) anther culture. Plant Cell Rep 27:805–811

    Google Scholar 

  • Stolarz A (1991). Cell and protoplast culture, somatic embryogenesis and transformation studies in different forms of Triticosecale Wittmack. In: Proceedings of 2nd international triticale symposium. CIMMYT, Mexico, 286–289

    Google Scholar 

  • Stolarz A, Lörz H (1991) Somatic embryogenesis, in vitro multiplication and plant regeneration from immature embryo explants of hexaploid triticale (×Triticosecale Wittmack). Zhurnal Pflanzen-zuecht 96:353–362

    Google Scholar 

  • Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. Gene Genomes Genet 3:2233

    Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  • Vikrant, Rashid A (2001) Comparative study of somatic embryogenesis from immature and mature embryos and organogenesis from leaf-base of Triticale. Plant Cell Tissue Org Cul 64:33–38

    Google Scholar 

  • Vives EP, Brodin B, Lebleu (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Google Scholar 

  • Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12(6):327–350

    Article  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–952

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Sun CS, Wang CC, Chen NF (1973) The induction of pollen plantlets of triticale and capsicum annum from anther culture. Sci Sin 16:147–151

    Google Scholar 

  • Wedzony M, Forster BP, Zur I, Golemice E, Szechynska-Hebda, Dubas E, Gotebiowska G (2009) Progress in doubled haploid technology in higher plants. In: Touraev A, Forster BP, Mohan Jain S (eds). Advances in haploid production in higher plants. Springer, Berlin:1–33

    Google Scholar 

  • Weeks JT, koshiyama KY, Maier-Greiner U, Schäeffner T, Anderson OD (2000) Wheat transformation using cyanamide as a new selective agent. Crop Sci 40: 1749–1754

    Google Scholar 

  • Wei Z, Wang X, Xing S (2012) Current progress of biosafe selectable markers in plant transformation. J Plant Breed Crop Sci 4(1):1–8

    Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436

    Article  CAS  Google Scholar 

  • Würschum T, Tucker MR, Reif JC, Maurer HP (2012) Improved efficiency of doubled haploid generation in hexaploid triticale by in vitro chromosome doubling. BMC Plant Biol 12:109

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu H, Sparks CA, Amoah B, Jones HD (2003) Factors influencing successful agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    CAS  PubMed  Google Scholar 

  • Yu H, Yao Q, Wang L, Zhao Z, Gong Z, Tang S, Liu Q, Gu M (2009) Generation of selectable marker-free transgenic rice resistant to chewing insects using two co-transformation systems. Prog Nat Sci 9(10):1485–1492

    Article  Google Scholar 

  • Zheng MY, Weng Y, Liu W, Konzak CF (2002) The effect of ovary conditioned medium on microspore embryogenesis in common wheat (Triticum aestivum L.). Plant Cell Rep 20:802–807

    Article  CAS  Google Scholar 

  • Ziemienowicz A, Shim YS, Matsuoka A, Eudes F, Kovalchuk I (2012) A novel method of transgene delivery into triticale plants using the agrobacterium transferred DNA-derived nano-complex. Plant Physiol 158:1503–1513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zimny J, Lörz H (2000) Transgenic triticale (Triticum durum ×Secale cereale). Biotechnol Agri Forest 46:109–126

    Article  CAS  Google Scholar 

  • Zimny J, Becker D, Brettschneider R, Lörz H (1995) Fertile transgenic triticale (×Triticosecale Wittmack). Mol Breed 1:155–164

    Article  Google Scholar 

  • Zhou H, Arrowsmith JW, Fromm ME, Hironaka CM, Taylor ML, Rodriguez D, Pajeau ME, Brown SM, Santino CG, Fry JE (1995) Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep 15:159–163

    CAS  PubMed  Google Scholar 

  • Zuo J, Niu QW, Ikeda Y, Chua NH (2002) Marker-free transformation: increasing transformation frequency by the use of regeneration promoting genes. Curr Opin Biotechnol 13:173–180

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Eudes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada

About this chapter

Cite this chapter

Maheshwari, P., Eudes, F. (2015). Genetic Engineering and Precision Editing of Triticale Genomes. In: Eudes, F. (eds) Triticale. Springer, Cham. https://doi.org/10.1007/978-3-319-22551-7_8

Download citation

Publish with us

Policies and ethics