Skip to main content

Triticale Biotic Stresses—Known and Novel Foes

  • Chapter
  • First Online:
Triticale

Abstract

The paper describes main diseases affecting triticale worldwide. The first disease which occurred on this cereal in epidemic proportions was stem rust (Pucinia graminis f. sp. tritici) in Australia. Leaf and stripe rusts (P. recondita f. sp. tritici and P. striiformis) have also gained over years in importance wherever triticale is grown. In recent years, at least in Poland, powdery mildew caused by Blumeria graminis occurred in epidemic proportions in quite a number of winter triticale cultivars. Similar phenomenon has been observed with diseases caused by necrotrophic pathogens such as fungal species from the Septoria complex and other pathogens such as Cochliobolus sativus, Fusarium culmorum, and F. graminearum, Microdochium nivale, Bipolaris sorokiniana, Pseudocercosporella herpotrichoides, and Gaeumannomyces gramminis var. tritici. An account is given to the new foe of Blumeria graminis sp. inciting powdery mildew in triticale in recent decade. Also bacteria, viruses, virus-like organisms, and nematodes are duly treated in this overview.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GC, Hart LP (1989) The role of deoxynivalenol and 15-acetyldeoxynivalenol in pathogenesis by Gibberella zeae, as elucidated through protoplast fusions between toxigenic and nontoxigenic strains. Phytopathology 79:404–408

    Article  CAS  Google Scholar 

  • Adhikari NK, McIntosh AR (1998) Inheritance of wheat stem rust resistance in triticale. Plant Breed 117:505–513

    Article  Google Scholar 

  • Adonina IG, Orlovskaya AO, Tereshchenko O, Yu O, Koren VL, Khotyleva VL, Shumny KV, Salina AE (2011) Development of commercially valuable traits in hexaploid triticale lines with Aegilops introgressions as dependent on the genome composition. Russ J Genet 47(4):453–461

    Article  CAS  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier, San Francisco

    Google Scholar 

  • Akhtar MA, Hamid SJ, Aslam M (1986) Evaluation of resistance of wheat to bacterial leaf blight. Pak J Agric Res 7(3):168–170

    Google Scholar 

  • Akinsanmi OA, Backhouse D, Simpfendorfer S, Chakraborty S (2006) Pathogenic variation of Fusarium isolates associated with head blight of wheat in Australia. J Phytopathol 154:513–521

    Article  Google Scholar 

  • Alves-Santos MF, Diez JJ (2012) Control of Fusarium diseases. ISBN 978-81-308-0470-5

    Google Scholar 

  • Amarasinghea CC, Tamburic-Ilincic L, Gilbert G, Brûlé-Babela LA, Dilantha Fernandoa GW (2013) Evaluation of different fungicides for control of Fusarium head blight in wheat inoculated with 3ADON and 15ADON chemotypes of Fusarium graminearum in Canada. Can J Plant Pathol 35(2):200–208

    Article  CAS  Google Scholar 

  • Arseniuk E (1996) Triticale diseases—a review. In: Triticale: today and tomorrow developments in plant breeding, vol 5, pp 499–525

    Google Scholar 

  • Arseniuk E, Sodkiewicz W (2002) Study of phenotypic traits of partial resistance to Stagonospora nodorum in winter triticale introgressive lines, commercial cultivars and dihaploid lines. In: Proceedings of the 5th international triticale symposium, vol I, June 30–July 5 2002, Radzików, pp 147–161

    Google Scholar 

  • Arseniuk E, Strzembicka A (2008a). Reaction of triticale cultivars and breeding lines to Blumeria graminis sp. in Poland. In: Prohens J, Badenes JM (eds) Modern variety breeding for present and future needs, Proceedings of 18th EUCARPIA general congress, 9–12 Sept 2008, Valencia, p 311

    Google Scholar 

  • Arseniuk E, Strzembicka A (2008b) P.61—Emerging virulences of Blumeria graminis sp. on triticale in Poland. In: ENDURE international conference 2008, Diversifying crop protection, 12–15 Oct 2008, La Grande-Motte, France—Oral presentations

    Google Scholar 

  • Arseniuk E, Walczewski J (2014) Effect of dihaploid technology on resistance of winter wheat and winter triticale to Stagonospora nodorum blotch (SNB). In: Behl RK, Arseniuk E (eds) Biotechnology and breeding perspectives. AGROBIOS (INTERNATIONAL), pp 313–320

    Google Scholar 

  • Arseniuk E, Góral T, Czembor HJ (1993) Reaction of triticale, wheat and rye accessions to graminaceous Fusarium spp. at the seedling and adult plant stages. Euphytica 70:175–183

    Article  Google Scholar 

  • Arseniuk E, Foremska E, Góral T, Chełkowski J (1999) Fusarium head blight reactions and accumulation of deoxynivalenol (DON) and some of its derivatives in kernels of wheat, triticale and rye. J Phytopathol 147:577–590

    Article  CAS  Google Scholar 

  • Asiedu R, Fisher JM, Driscoll JC (1990) Resistance to Heterodera avenae in the rye genome of triticale. Theor Appl Genet 79:331–336

    Google Scholar 

  • Banaszak Z (2010) Breeding triticale in DANKO. 61 Tagung der Vereinigung der Pflfl anzenzüchter und Saatgutkauflfl eute Österreichs 2010:65–68

    Google Scholar 

  • Bithell et al (2011) Susceptibility to take-all of cereal and grass species, and their effects on pathogen inoculum. Ann Appl Biol 159:252–266

    Article  Google Scholar 

  • Bolton DM, Kolmer AJ, Garvin FD (2008) Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol 9(5):563–575

    Article  PubMed  Google Scholar 

  • Bottalico A, Perrone G (2002) Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur J Plant Pathol 108:998–1003

    Article  Google Scholar 

  • Carvalho A, Marti A, Heslop-Harrison SJ, Guedes-Pinto H, Lima-Brito J (2009) Identification of the spontaneous 7BS/7RL intergenomic translocation in one F1 multigeneric hybrid from the Triticeae tribe. Plant Breed 128:105–108

    Article  CAS  Google Scholar 

  • Chelkowski J, Kaptur P, Tomkowiak M, Kostecki M, Golinski P, Ponitka A, Slusarkiewicz-Jarzina A, Bocianowski A (2000) Moniliformin accumulation in kernels of triticale accessions inoculated with Fusarium avenaceum in Poland. J Phytopathol 148:322–328

    Google Scholar 

  • Clarke JM, DePauw RM (1989) Water imbibition rate of wheat kernels as affected by kernel color, weather damage, and method of threshing. Can J Plant Sci 69:1–7

    Article  Google Scholar 

  • Collins JD (1995) Diseases of barley, rye, and triticale in Alabama. Alabama A & M and Auburn Universities, Alabama Cooperative Extension Systems ANR-903:4 p

    Google Scholar 

  • Comeau A, Langevin F, Savard ME, Gilbert J, Dion Y, Rioux S, Martin SA, Haber S, Voldeng H, Fedak G, Somers D, Eudes F (2008) Improving Fusarium head blight resistance in bread wheat and triticale for Canadian needs. Cereal Res Commun 36(6):91–92

    Google Scholar 

  • Cunfer MB, Scolari LB (1982) Xanthomonas campestris pv. translucens on triticale and other small grains. Phytopathology 72:683–686

    Article  Google Scholar 

  • Dabkevicius Z, Mikaliunaite R (2006) The effect of fungicidal seed treaters on germination of rye ergot (Claviceps purpurea (Fr.) Tul.) sclerotia and on ascocarp formation. Crop Prot 25:677–683

    Article  CAS  Google Scholar 

  • Dermenko OP (1993) Fusariosis of seeds of winter triticale. Mikrobiol Z 68(2):105–112

    Google Scholar 

  • Dubas E, Gołębiowska G, Żur I, Wędzony M (2011) Microdochium nivale (Fr., Samuels and Hallett): cytological analysis of the infection process in triticale (X Triticosecale Wittm.). Acta Physiol Plant 33:529–537. doi:10.1007/s11738-010-0576-9

    Article  Google Scholar 

  • Duczek LJ, Jones-Flory LL, Reed SL, Bailey KL, Lafond GP (1996) Sporulation of Bipolaris sorokiniana on the crowns of crop plants grown in Saskatchewan. Can J Plant Sci 762:367–861

    Google Scholar 

  • Dumalasova V, Bartos P (2010) Reaction of wheat, alternative wheat and triticale cultivars to common bunt. Czech J Genet Plant Breed—UZEI 46(1):14–20

    Google Scholar 

  • Dumalasova V, Bartos P (2012) Wheat screening for resistance to common bunt and dwarf bunt. 63 Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs 2012:51–54

    Google Scholar 

  • Dundas IS, Deirdre E, Frappell DE, Crack DM, Fisher JM (2001) Deletion mapping of a nematode resistance gene on rye chromosome 6R in wheat. Crop Sci 41(6):1771–1778

    Article  CAS  Google Scholar 

  • Duveiller E, Maraite H (1990) Bacterial heath rot of wheat caused by Pseudomonas-fuscovaginae in the highlands of Mexico. Plant Dis 74(11):932–935. doi:10.1094/PD-74-0932

    Article  Google Scholar 

  • El-Sadek SAM, Abdel-Latif MR, Abdel-Gawad TI (1993) Bacterial leaf blight disease of wheat in Egypt. Egypt J Microbiol 27(2):177–196

    Google Scholar 

  • Fitt BDL, Goulds A, Hollins TW, Jones DR (1990) Strategies for control of eyespot (Pseudocercosporella herpotrichoides) in UK winter wheat and winter barley. Ann Appl Biol 117:473–486. doi:10.1111/j.1744-7348.1990.tb04235.x

    Article  Google Scholar 

  • Fried PM, Meister E (1987) Inheritance of leaf and head resistance of winter wheat to Septoria nodorum in a diallel cross. Phytopathology 77:1371–1375

    Article  Google Scholar 

  • Gal M, Oettler G (2003) Diallel analysis of resistance to Stagonospora nodorum in winter triticale. Cereal Res Commun 31(3–4):315–322

    Google Scholar 

  • Gardiano CG, Krzyzanowski AA, Abi Saab GJO, Dallemole-Giaretta R, Lopes AE (2013) Population reduction of the reniform nematode with the incorporation of soil cover crops in greenhouse. Nematropica 43:138–142

    Google Scholar 

  • Gaudet DA, Fuentes-Davila G, Burnett PA, De Pauw RM (2001) Reactions of western Canadian spring wheat and triticale varieties to Tilletia indica, the causal agent of Karnal bunt. Can J Plant Sci 81:503–508

    Article  Google Scholar 

  • Gaurilcikiene I (2000) Effect of seed treatment on seed and seedling health of spring triticale. In: Metspalu L, Mitt S (eds) Transactions of the Estonian Agricultural University, Book Series: Teadustoode Kogumik, vol 209, pp 35–37

    Google Scholar 

  • Goncalves CG, Krzyzanowski Aa, Saab A, Jorge O (2013) Population reduction of the reniform nematode with the incorporation of soil cover crops in greenhouse. Nematropica 3(1):138–142

    Google Scholar 

  • Gontarenko OV, Babayants LT, Gerzhova MA (1998) Leaf spot diseases of wheat and triticale in southern Ukraine. MIkologiya i Fitopatologiya 32(2):61–64

    Google Scholar 

  • Góral T (2006) Evaluation of resistance of winter wheat and winter triticale breeding lines to Fusarium head blight caused by Fusarium culmorum and resistance of winter triticale to powdery mildew (Blumeria graminis) in 2005. Biuletyn IHAR 242:79–88

    Google Scholar 

  • Góral T (2009) Resistance of winter triticale cultivars to Fusarium head blight caused by Fusarium culmorum. Biuletyn IHAR 254:41–50

    Google Scholar 

  • Góral T, Arseniuk E (2003) Reaction of somaclonal lines of winter triticale to Fusarium infection part I: Fusarium head blight caused by F. culmorum W.G. Smith (Sacc.). Biuletyn IHAR 228:117–130

    Google Scholar 

  • Góral T, Ochodzki P (2006) Effect of severity of Fusarium head blight and kernel infection with Fusarium culmorum on mycotoxin content in grain of winter wheat cultivars. Conference Papers of 28. Mykotoxin-Workshop, Bydgoszcz, 29–31, May 2006, p 84

    Google Scholar 

  • Góral T, Ochodzki P (2007) Resistance of polish winter triticale cultivars to Fusarium head blight and accumulation of Fusarium-myctoxins in grain. In: Proceedings of the 6th international triticale symposium, 3–7 September 2002, Stellenbosch, South Africa, p 140–143

    Google Scholar 

  • Góral T, Buśko M, Cichy H, Jackowiak H, Perkowski J (2002a) Resistance of winter triticale lines and cultivars to Fusarium head blight and deoxynivalenol accumulation in kernels. J Appl Genet 43A:237–248

    Google Scholar 

  • Góral T, Perkowski J, Arseniuk E (2002b) Study on Fusarium head blight of winter triticale. In: Arseniuk E (ed) Proceedings of the 5th international triticale symposium, 30 June–5 July 2002, Radzików, vol I, pp 179–184

    Google Scholar 

  • Góral T, Wiśniewska H, Ochodzki P, Walentyn-Góral D, Kwiatek M (2013) Reaction of winter triticale breeding lines to Fusarium head blight and accumulation of Fusarium metabolites in grain in two environments under drought conditions. Cereal Res Commun 41(1):106–115. doi:10.1556/CRC.2012.0028

  • Grasiane de Cezare D, Schons J, Lau D (2011) Analysis of resistance/tolerance of the wheat cultivar BRS Timbaúva to Barley yellow dwarf virus (BYDV-PAV). Trop Plant Pathol 36(4):249–255

    Google Scholar 

  • Gultyaevaa EI, Orinaa SA, Gannibala BPh, Mitrofanovab OP, Odintsovab IG, Laikovac IL (2014) The effectiveness of molecular markers for the identification of Lr28, Lr35, and Lr47 genes in common wheat. Russ J Genet 50(2):131–139

    Google Scholar 

  • Gutteridge RJ, Hornby D, Hollins TW, Prew RD (1993) Take-all in autumn-sown wheat, barley, triticale and rye grown with high and low inputs. Plant Pathol 42(3):425–431. doi:10.1111/j.1365-3059.1993.tb01521.x

    Article  Google Scholar 

  • Haesert G, Baets D, De Danneels A, Danneels A (1987) Diseases of triticale and their control. Med Fac Landbouw Rijksuniv Gent 52:797–806

    Google Scholar 

  • Hanzalova A, Baroš P (2010) Physiologic specialization of wheat leaf rust (Puccinia triticina Eriks.) in the Czech Republic in 2005–2008. Cereal Res Commun 38(3):366–374. doi:10.1556/CRC.38.2010.3.7

    Article  Google Scholar 

  • Hiddink GA, Termorshuizen AJ, Raaijmakers JM, van Bruggen AHC (2005) Effect of mixed and single crops on disease suppressiveness of soils. Phytopathology 95(11):1325–1332

    Article  CAS  PubMed  Google Scholar 

  • Holtz MD, Kumar K, Xi K (2013) Virulence phenotypes of Puccinia striiformis in Alberta from 2009–2011. Can J Plant Pathol 35(2):241–250. doi:10.1080/07060661.2013.775184

    Article  CAS  Google Scholar 

  • Holtz DM, Kumar K, Zantinge LJ, Xi K (2014) Genetic diversity of Puccinia striiformis from cereals in Alberta, Canada. Can J Plant Pathol 35(2):241–250. doi:10.1111/ppa.12094

    Article  CAS  Google Scholar 

  • Ibrahim IKA, Lewis SA, Harshman DC (1993) Host suitability of gramineous crop cultivars for isolates of Meloidogyne arenaria and M. incognita. J Nematol 25(4):S858–S862

    Google Scholar 

  • Ilbagi H, Citir A, Yorganci U (2005) Occurrence of virus infections on cereal crops and their identifications in the Trakya region of Turkey. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz-J Plant Dis Prot 112(4):313–320

    Google Scholar 

  • Janusauskaite D, Ciuberkis S (2010) Effect of different soil tillage and organic fertilizers on winter triticale and spring barley stem base diseases. Crop Prot 29:802–807

    Article  Google Scholar 

  • Jeżewska M, Trzmiel K (2010) Studies on cereal soil-borne viruses in Poland. J Plant Prot Res 50(4):527–534. doi:10.2478/v10045-010-0087-0

    Article  Google Scholar 

  • Johnson AW, Dowler CC, Baker SH, Handoo ZA (1998) Crop yields and nematode population densities in triticale-cotton and triticale-soybean rotations. J Nematol 30(3):353–361

    PubMed Central  CAS  PubMed  Google Scholar 

  • Joshi LM, Goel LB, Singh DV (1976) Susceptibility of triticale-hexaploide to loose smut of wheat. Indian Phytopathol 29(4):398–400

    Google Scholar 

  • Kalih R, Maurer HP, Hackauf B, Miedaner T (2014) Effect of a rye dwarfing gene on plant height, heading stage, and Fusarium head blight in triticale (×Triticosecale Wittmack). Theor Appl Genet 127:1527–1536

    Article  PubMed  Google Scholar 

  • Karska K, Strzembicka A, Czajowski G, Czembor P (2013) Virulence in population of Puccinia striiformis, the causal agent of triticale yellow rust in Poland. Biuletyn IHAR 269:21–27

    Google Scholar 

  • Kiecana I, Perkowski J, Chelkowski J (1987) Trichothecene mycotoxins in kernels and head fusariosis susceptibility in winter triticale. Mycotoxin research, special issue, European seminar ‘Fusarium-mycotoxins, taxonomy and pathogenicity’, pp 53–56

    Google Scholar 

  • King KM, West JS, Brunner PC, Dyer PS, Fitt BDL (2013) Evolutionary relationships between Rhynchosporium lolii sp. nov. and other Rhynchosporium species on grasses. PLoS ONE 8(10):e72536. doi:10.1371/journal.pone.0072536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kociuba W (1992) Assessment of agriculturally important features of winter and spring triticale collections (×Trificosecale Wittmack). Hereditas 116:323–328

    Google Scholar 

  • Kowalczyk K, Gruszecka D, Nowak M, Leśniowska-Nowak J (2011) Resistance of triticale hybrids with Pm4b and Pm6 genes to powdery mildew. Acta Biolo Cracov Ser Bot 53(1):57–62. doi:10.2478/v10182-011-0008-1

    Google Scholar 

  • Kwiatek M, Błaszczyk L, Wiśniewska H, Apolinarska B (2012) Aegilops-Secale amphiploids: chromosome categorisation, pollen viability and identification of fungal disease resistance genes. J Appl Genet 53:37–40. doi:10.1007/s13353-011-0071-z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Langevin F, Eudes F, Comeau A (2004) Effect of trichothecenes produced by Fusarium graminearum during Fusarium head blight development in six cereal species. Eur J Plant Pathol 110:735–746

    Article  Google Scholar 

  • Langevin F, Eudes F, Comeau A, Dion Y, Rioux S, Randhawa H, Fedak G, Cao W, Gilbert J, Lachance C, Salmon D (2009) Sources of type II Fusarium resistance for triticale breeding. In: Proceedings of the 6th Canadian workshop on Fusarium head blight, 1–4 Nov 2009, Ottawa, Canada, p 66

    Google Scholar 

  • Lawn DA, Sayre KD (1992) Soilborne pathogens on cereals in a highland location in Mexico. Plant Dis 76(2):149–154

    Article  Google Scholar 

  • Lebedeva L, Tvaruzek L (2006) Specialisation of Rhynchosporium secalis, (Oud.) J.J. Davis infecting barley and rye. Plant Prot Sci 42(3):85–93

    Google Scholar 

  • Lemańczyk G (2012a) Severity of root and stem base diseases of spring cereals as affected by chemical control of weeds. Prog Plant Prot/Post Ochr Roślin 52(2):369–376

    Google Scholar 

  • Lemańczyk G (2012b) Susceptibility of winter triticale cultivars to Rhizoctonia cerealis (sharp eyespot) and R. solani. J Plant Prot Res 52(4):422–434. doi:10.2478/v10045-012-0069-5

  • Li HJ, Conner RL, Liu ZY, Li YW, Chen Y, Zhou YL, Duan XY, Shen TM, Chen Q, Graf RJ, Jia X (2007) Characterization of wheat-triticale lines resistant to powdery mildew, stem rust, stripe rust, wheat curl mite, and limitation on spread of WSMV. Plant Dis 91:368–374

    Article  Google Scholar 

  • Liueroth E, Franzon-Almgren I, Gunnarsson T (1996) Root colonization by Bipolaris sorokiniana in different cereals and relations to lesion development and natural root cortical cell death. J Phytopathol 144:301–307. doi:10.1111/j.1439-0434.1996.tb01533.x

    Article  Google Scholar 

  • Lozano-del Rio JA, Lozano-Cavazos JC, Ibarra-Jiménez L, de la Cruz-Lázaro E, Colín-Rico M, Zamora-Villa MV, Mergoum M, Pfeiffer HW, Ammar K (2010) Registration of ‘TCLF-AN-105’ triticale. J Plant Reg 4(2):127–130

    Article  Google Scholar 

  • Maccaferri M, Sanguineti CM, Mantovani P, Demontis A, Massi A, Ammar K, Kolmer AJ, Czembor JH, Ezrati S, Tuberosa R (2010) Association mapping of leaf rust response in durum wheat. Mol Breed 26:189–228. doi:10.1007/s11032-009-9353-0

    Article  CAS  Google Scholar 

  • Maier FJ, Oettler G (1996) Genetic variation for head blight resistance in triticale caused by Fusarium graminearum isolates of different deoxynivalenol production. Euphytica 89(3):387–394

    CAS  Google Scholar 

  • Matsumoto N, Tajimi A (1988) Life-history strategy in Typhula incarnata and T. ishikariensis biotypes A, B, and C as determined by sclerotium production. Can J Bot 66(12):2485–2490

    Article  Google Scholar 

  • McCormick S (2003) The role of DON in pathogenicity. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley, pp 165–183

    Google Scholar 

  • McIntosh RA, Luig NH, Milne DL, Cusick J (1983) Vulnerability of triticales to wheat stem rust. Can J Plant Pathol 5(2):61–69

    Article  Google Scholar 

  • McLeod GJ, Randhawa SH, Ammar K, Beres LB, Muri BR (2012) Brevis spring triticale. Can J Plant Sci 92:199–202. doi:10.4141/CJPS2011-103

    Article  Google Scholar 

  • Mergoum M, Gómez-Macpherson H (2004) Triticale improvement and production. In: FAO plant production and protection paper. Food And Agriculture Organization of the United Nations, Rome, 179, 172 p

    Google Scholar 

  • Miedaner T, Voss HH (2008) Effect of dwarfing Rht genes on Fusarium head blight resistance in two sets of near-isogenic lines of wheat and check cultivars. Crop Sci 48:2115–2122

    Article  Google Scholar 

  • Miedaner T, Reinbrecht C, Lauber U, Schollenberger M, Geiger HH (2001) Effects of genotype and genotype x environment interaction on deoxynivalenol accumulation and resistance to Fusarium head blight in rye, triticale, and wheat. Plant Breed 120:97–105

    Article  CAS  Google Scholar 

  • Miedaner T, Heinrich N, Schneider B, Oettler G, Rohde S, Rabenstein F (2004) Estimation of deoxynivalenol (DON) content by symptom rating and exoantigen content for resistance selection in wheat and triticale. Euphytica 139:129–132

    Article  Google Scholar 

  • Miedaner T, Kalih R, Michel S, Maurer HP (2013) Molecular and genetic analysis of Fusarium head blight resistance in triticale (×Triticosecale). Abstracts of the 12th European Fusarium Seminar, 12–16 May 2013, Bordeaux, France, p 68

    Google Scholar 

  • Miethbauer S, Heiser I, Liebermann B (2003) The phytopathogenic fungus Ramularia collo-cygni produces biologically active rubellins on infected barley leaves. J Phytopathol 151:665–668

    Article  CAS  Google Scholar 

  • Mikos-Szymanska M, Podolska G (2013) Contamination with Fusarium mycotoxins in triticale depends on agrotechnical factors and cultivar. J Food Agric Environ 11:1528–1531

    Google Scholar 

  • Mirdita V, Dhillon BS, Geiger HH, Miedaner T (2008) Genetic variation for resistance to ergot (Claviceps purpurea [Fr.] Tul.) among full-sib families of five populations of winter rye (Secale cereale L.). Theor Appl Genet 118:85–90. doi:10.1007/s00122-008-0878-0

    Article  CAS  PubMed  Google Scholar 

  • Mukodo R, Mundende RM, Ngongo MM, Reheul DD, Haesaert GG (2008) Diseases on wheat and triticale under the growing conditions of Lubumbashi (Congo RD). Commun Agric Appl Biol Sci 73(2):95–100

    Google Scholar 

  • Nielsen LK, Jensen JD, Nielsen GC, Jensen JE, Spliid NH, Thomsen IK, Justesen AF, Collinge DB, Jørgensen LN (2011) Fusarium head blight of cereals in Denmark: species complex and related mycotoxins. Phytopathology 101:960–969

    Article  CAS  PubMed  Google Scholar 

  • Nkongolo KK (1996) Expression of barley yellow dwarf virus and Russian wheat aphid resistance genes in and fertility of spring wheat x triticale hybrids and backcross lines. Euphytica 90:337–344

    Article  Google Scholar 

  • Nkongolo KK, Armstrong KC, Comeau A, Pierr CASt (1992) Identification of rye chromosomes involved in tolerance to barley yellow dwarf virus disease in wheat × triticale hybrids. Plant Breed 109: 123–129. doi:10.1111/j.1439-0523.1992.tb00162.x

  • Oettler G, Schmid T (2000) Genotypic variation for resistance to Septoria nodorum in triticale. Plant Breed 119:487–490

    Article  Google Scholar 

  • Oettler G, Wahle G (2001) Genotypic and environmental variation of resistance to head blight in triticale inoculated with Fusarium culmorum. Plant Breed 120:297–300

    Article  Google Scholar 

  • Oettler G, Heinrich N, Miedaner T (2004) Estimates of additive and dominance effects for Fusarium head blight resistance of winter triticale. Plant Breed 123:525–530

    Article  Google Scholar 

  • Olivera PD, Pretorius ZA, Badebo A, Jin Y (2013) Identification of resistance to races of Puccinia graminis f. sp. tritici with broad virulence in triticale (×Triticosecale). Plant Dis 97:479–484

    Article  Google Scholar 

  • Opoku N, Back M, Edwards SG (2013) Development of Fusarium langsethiae in commercial cereal production. Eur J Plant Pathol 136(1):159–170. doi:10.1007/s10658-012-0151-x

    Article  CAS  Google Scholar 

  • Ordon F, Habekuss A, Kastirr U, Rabenstein F, Kühne T (2009) Virus resistance in cereals: sources of resistance, genetics and breeding. J Phytopathol 157:535–545. doi:10.1111/j.1439-0434.2009.01540.x

    Article  Google Scholar 

  • Orolaza NP, Lamari L, Ballance GM (1995) Evidence of a host-specific chlorosis toxin from Pyrenophora tritici-repentis, the causal agent of tan spot of wheat. Phytopathology 85(10):1282–1287. doi:10.1094/Phyto-85-1282

    Article  CAS  Google Scholar 

  • Packa D, Jackowiak H, Góral T, Wiwart M, Perkowski J (2008) Scanning electron microscopy of Fusarium-infected kernels of winter triticale (×Triticosecale Wittmack). Seed Sci Biotechnol 2:27–31

    Google Scholar 

  • Pageau D, Collin J, Wauthy JM (1994) A note on the resistance of soft wheat, durum wheat and triticale to ergot. Phytoprotection 75(1):45–49

    Article  Google Scholar 

  • Park RF (1996a) Pathogenic specialisation of Puccinia recondita f. sp. tritici in Australia and New Zealand in 1990 and 1991. Australas Plant Pathol 25(1):12–17

    Article  Google Scholar 

  • Park FR (1996b) Pathogenic specialisation of Puccinia graminis on winter cereals and grasses in Australia in 1990 and 1991. Australas Plant Pathol 25(2):135–140

    Article  Google Scholar 

  • Park RF, Wellings CR (1992) Pathogenic specialisation of wheat rusts in Australia and New Zealand in 1988 and 1989. Australas Plant Pathol 21(2):61–69

    Article  Google Scholar 

  • Park RF, Burdon JJ, Mcintosh RA (1995) Studies on the origin, spread, and evolution of an important group of Puccinia recondita f. sp. tritici pathotypes in Australasia. Eur J Plant Pathol 101(6):613–622. doi:10.1007/BF01874865

    Article  Google Scholar 

  • Park FR, Burdon JJ, Jahoor A (1999) Evidence for somatic hybridization in nature in Puccinia recondita f. sp. tritici, the leaf rust pathogen of wheat. Mycol Res 103(6):715–723

    Google Scholar 

  • Perkowski J, Kaczmarek Z (2002) Distribution of deoxynivalenol and 3-acetyldeoxynivalenol in naturally contaminated and Fusarium culmorum infected triticale samples. Die Nahrung 46:415–419

    Article  CAS  PubMed  Google Scholar 

  • Perkowski J, Buśko M, Chmielewski J, Góral T, Tyrakowska B (2008) Content of trichodiene and analysis of fungal volatiles (electronic nose) in wheat and triticale grain naturally infected and inoculated with Fusarium culmorum. Int J Food Microbiol 126:127–134

    Article  CAS  PubMed  Google Scholar 

  • Pretorius ZA, Pakendorf KW, Marais GF, Prins R, Komen JS (2007) Challenges for sustainable cereal rust control in South Africa. Aust J Agric Res 58(6):593–601. doi:10.1071/AR06144

    Article  Google Scholar 

  • Pribek D, Pocsai E, Vida G, Veisz O (2006) Presence of wheat dwarf virus, cereal yellow dwarf virus-RPV and barley yellow dwarf viruses in cereal species in Martonvasar. Cereal Res Commun 34(1):625–628. doi:10.1556/CRC.34.2006.1.156

    Article  Google Scholar 

  • Raguchander T, Kulkarni S, Hegde KR (1988) Physiological studies on leaf blight of triticale caused by Bipolaris sorokiniana (SACC) Shoem. anamorph of Cochliobolus sativus. Karnataka J Agric Sci 1(1):45–50

    Google Scholar 

  • Randhawa H, Puchalski BJ, Frick M, Goyal A, Despins T, Graf RJ, Laroche A, Gaudet DA (2012) Stripe rust resistance among western Canadian spring wheat and triticale varieties. Can J Plant Sci 92:713–722

    Article  CAS  Google Scholar 

  • Randhawa H, Eudes F, Beres B, Graf R, Fedak G, Comeau A, Langevin F, Dion Y, Pozniak C (2013) Integrated approaches for triticale breeding. In: Abstract book of the 8th international triticale symposium, 10–14 June 2013, Ghent, Belgium, p 29

    Google Scholar 

  • Rasmussen PH, Nielsen KF, Ghorbani F, Spliid NH, Nielsen GC, Jørgensen LN (2012) Occurrence of different trichothecenes and deoxynivalenol-3-β-D-glucoside in naturally and artificially contaminated Danish cereal grains and whole maize plants. Mycotoxin Res 28:181–190

    Article  CAS  PubMed  Google Scholar 

  • Reinbrecht C, Miedaner T, Schollenberger M, Lauber U, Geiger HH (1996) Comparison of mycotoxin accumulation in grains of rye, triticale and wheat inoculated with Fusarium culmorum. Vortr Pflanzenzuchtung 24:196–197

    Google Scholar 

  • Reis EM (1991) Control of Bipolaris sorokiniana on triticale seeds. In: Proceedings of the international triticale symposium. CIMMYT, ITA, pp 212–214

    Google Scholar 

  • Rochat L, Péchy-Tarr M, Baehler E, Maurhofer M, Keel C (2010) Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry. MPMI 23(7):949–961. doi:10.1094/MPMI-23-7-0949

    Article  CAS  PubMed  Google Scholar 

  • Santra DK, Kidwell K, Campbell K (2007) Disease resistance—eyespot. Marker assisted selection in wheat alt = “CSREES-USDA” target = “NEW2”. http://maswheat.ucdavis.edu/images/CAP/cap_logo_narrow.jpg

  • Schneider E, Seaman WL (1986) Typhula phacorrhiza on winter wheat. Can J Plant Pathol 8:269–276

    Article  Google Scholar 

  • Shu-Lan Fu, Zong-Xiang T, Zheng-Long R (2011) Establishment of wheat-rye addition lines and De Novo powdery mildew resistance gene from chromosome 5R. Yi chuan = Hereditas/Zhongguo yi chuan xue hui bian ji 33(11):1258–62

    Google Scholar 

  • Singh RN, Singh AK, Singh BN (2007) A double digit scale for appraising intensity of leaf blight in wheat, barley and triticale. Proc Indian Natl Sci Acad B Biol Sci 77(3):277–282

    Google Scholar 

  • Skajennikoff M, Rapilly F (1983) Aggressiveness of Septoria nodorum on wheat and triticale. Agronomie 3:131–140

    Article  Google Scholar 

  • Sodkiewicz W, Strzembicka A (2004) Application of Triticum monococcum for the improvement of triticale resistance to leaf rust (Puccinia triticina). Plant Breed 123:39–42

    Article  Google Scholar 

  • Sodkiewicz W, Strzembicka A, Apolinarska B (2008) Chromosomal location in triticale of leaf rust resistance genes introduced from Triticum monococcum. Plant Breed 127(4):364–367. doi:10.1111/j.1439-0523.2007.01485.x

    Article  Google Scholar 

  • Sodkiewicz W, Strzembicka A, Sodkiewicz T, Majewska M (2009) Response to stripe rust (Puccinia striiformis Westend. f. sp. tritici) and its coincidence with leaf rust resistance in hexaploid introgressive triticale lines with Triticum monococcum genes. J Appl Genet 50(3):205–211

    Article  CAS  PubMed  Google Scholar 

  • Srinivasachary Gosman N, Steed A, Simmonds J, Leverington-Waite M, Wang Y, Snape J, Nicholson P (2008) Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet 116:1145–1153

    Article  PubMed  CAS  Google Scholar 

  • Szunics L, Pocsai E, Szunics Lu, Vida G (2000) Viral diseases on cereals in central Hungary. Acta Agron Hung 48(3):237–250. doi:10.1556/AAgr.48.2000.3.3

    Article  Google Scholar 

  • Taylor SP, Hollaway GJ, Hunt CH (2000) Effect of field crops on population densities of Pratylenchus neglectus and P. thornei in southeastern Australia; part 1: P. neglectus. J Nematol 32(4):S591–S599

    Google Scholar 

  • Terefe GT, Visser B, Herselman L, Prins R, Negussie T, Kolmer A, Pretorius AZ (2014) Diversity in Puccinia triticina detected on wheat from 2008 to 2010 and the impact of new races on South African wheat germplasm. Eur J Plant Pathol 139:95–105. doi:10.1007/s10658-013-0368-3

    Article  Google Scholar 

  • Thomas D, Maraite H, Boutry M (1992) Identification of rye- and wheat-types of Pseudocercosporella herpotrichoides with DNA probes. J Gen Microbiol 138:2305–2309

    Article  CAS  Google Scholar 

  • Tian S, Wolf GA, Weinert J (2004) Infection of triticale cultivars by Puccinia striiformis: first report on disease severity and yield loss. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz-J Plant Dis Prot 111(5):461–464

    Google Scholar 

  • Tian S, Weinert J, Wolf GA (2005) Accurate assessment of wheat and triticale cultivar resistance to Septoria tritici and Stagonospora nodorum infection by biotin/avidin ELISA. Plant Dis 89:1229–1234

    Article  Google Scholar 

  • Tillman BL, Harrison SA, Russin JS, Clark CA (1996) Relationship between bacterial streak and black chaff symptoms in winter wheat. Crop Sci 36(1):74–78

    Article  Google Scholar 

  • Troch V, Audenaert K, Vanheule A, Bekaert B, Höfte M, Haesaert G (2012) Phylogeography and virulence structure of the powdery mildew population on its ‘new’ host triticale. BMC Evol Biol 12:76. http://www.biomedcentral.com/1471-2148/12/76

  • Troch V, Audenaert K, Vanheule A, Bekaert B, Höfte M, Haesaert G (2013) Evaluation of resistance to powdery mildew in triticale seedlings and adult plants. Plant Dis 97:410–417

    Article  Google Scholar 

  • Trzmiel K, Jeżewska M, Zarzyńska A (2012) First report of soil-borne wheat mosaic virus (SBWMV)-infecting triticale in Poland. J Phytopathol 160(10):614–616. doi:10.1111/j.1439-0434.2012.01952.x

    Article  Google Scholar 

  • Uddin W, Viji G, Schumann GL, Boyd SH (2003) Detection of Pyricularia grisea causing gray leaf spot of perennial ryegrass turf by a rapid immuno-recognition assay. Plant Dis 87:772–778

    Article  CAS  Google Scholar 

  • van Toor RF, Bithell SL, Chng SF, McKay A, Cromey MG (2013a) Impact of cereal rotation strategies on soil inoculum concentrations and wheat take-all. NZ Plant Prot 66:204–213

    Google Scholar 

  • van Toor RF, Bithell SL, Chng SF, McKay A, Cromey MG (2013b) Influences of crop sequence, rainfall and irrigation, on relationships between Gaeumannomyces graminis var. tritici and take-all in New Zealand wheat fields. Australas Plant Pathol 42:205–217. doi:10.1007/s13313-012-0168-9

    Article  Google Scholar 

  • Vanstone V, Farsi M, Rathjen T, Cooper K (1996) Resistance of triticale to root lesion nematode in South Australia. In: GuedesPinto H, Darvey N, Carnide VP (eds) Triticale: today and tomorrow: developments in plant breeding, vol 5, pp 557–560

    Google Scholar 

  • Veitch RS, Caldwell CD, Martin RA, Lada R, Salmon D, Anderson DM, MacDonald D (2008) Susceptibility of winter and spring triticales to Fusarium head blight and deoxynivalenol accumulation. Can J Plant Sci 88:783788

    Article  Google Scholar 

  • Visser B, Herselman L, Bender CM, Zacharias A (2012) Microsatellite analysis of selected Puccinia triticina races in South Africa. Australas Plant Pathol 41(2):165–171. doi:10.1007/s13313-011-0104-4

    Article  CAS  Google Scholar 

  • Voss HH, Holzapfel J, Hartl L, Korzun V, Rabenstein F, Ebmeyer E, Coester H, Kempf H, Miedaner T (2008) Effect of the Rht-D1 dwarfing locus on Fusarium head blight severity in three segregating populations of winter wheat. Plant Breed 127:333–339

    Article  Google Scholar 

  • Wakuliński W, Zamorski C, Nowicki B, Schollenberger M (2001) Susceptibility of wheat and triticale to infection by Pyrenophora tritici-repentis (Died.) Drechsler. Biuletyn IHAR 218/219:147–154

    Google Scholar 

  • Wakuliński W, Zamorski C, Nowicki B, Schollenberger M (2002) Some topics in tan spot epidemiology: characteristic and significance the sources of primary infection. Acta Agrobot 55(1):347–357

    Article  Google Scholar 

  • Wakuliński W, Nowicki B, Zamorski C (2006) Susceptibility of winter triticale to infection by Puccinia graminis pers. Prog Plant Prot/Post w Ochronie Roślin 46(1):395–400

    Google Scholar 

  • Walters DR, Havis ND, Oxley SJ (2008) Ramularia collo-cygni: the biology of an emerging pathogen of barley. FEMS Microbiol Lett 279(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Waney VR, Kingsley MT, Gabriel DW (1991) Xanthomonas campestris pv. translucens genes determining host-specific virulence and general virulence on cereals identified by tn5-gusa insertion mutagenesis. Mol Plant Microbe Interact 4(6):623–627. doi:10.1094/MPMI-4-623

    Article  CAS  Google Scholar 

  • Warzecha T (2009) Susceptibility of selected winter wheat and triticale cultivars from DANKO Plant Breeders Ltd. to Fusarium seedling blight caused by Fusarium culmorum. Biuletyn IHAR 251:95–105

    Google Scholar 

  • Warzecha T, Góral H (2006) Combining ability of cms lines, strains and cultivars of triticale for susceptibility to seedling blight caused by Fusarium culmorum. Biuletyn IHAR 240(241):127–132

    Google Scholar 

  • Wehling P, Linz A, Hackauf B, Roux RS, Ruge B, Klocke B (2003) Leaf-rust resistance in rye (Secale cereale L.): 1 genetic analysis and mapping of resistance genes Pr1 and Pr2. Theor Appl Genet 107:432–438. doi:10.1007/s00122-003-1263-7

  • Welty RE, Metzger RJ (1996) First report of scald of triticale caused by Rhynchosporium secalis in North America. Plant Dis 80(11):1220–1223

    Article  Google Scholar 

  • Wilson J, Shaner G (1987) Slow leaf-rusting resistance in triticale. Phytopathology 77(3):458–462. doi:10.1094/Phyto-77-458

    Article  Google Scholar 

  • Wiwart M, Moś M, Wójtowicz T (2006) Studies on the imbibition of triticale kernels with a different degree of sprouting, using digital shape analysis. Plant Soil Environ 52:328–334

    Google Scholar 

  • Woś H, Strzembicka A (2005) Resistance to leaf rust (Puccinia recondita f. sp. tritici) at the seedling stage among single D-genome substitution lines of triticale Presto. Plant Breed Seed Sci 51:43–47

    Google Scholar 

  • Xiao Z, Bergeron H, Lau KCP (2012) Alternaria alternata as a new fungal enzyme system for the release of phenolic acids from wheat and triticale brans. Antonie Van Leeuwenhoek 101:837–844. doi:10.1007/s10482-012-9700-8

    Article  CAS  Google Scholar 

  • Zamorski C, Schollenberger M, Nowicki B (1996) Diagnosis of winter wheat and triticale diseases in seedling and tillering stages. In: Symposium on new directions in plant pathology, 11–13 Sep 1996, Krakow, Poland, pp 369–372

    Google Scholar 

  • Zhang XQ, Wang XP, Ross K, Hu H, Gustafson JP (2001) Rapid introduction of disease resistance from rye by anther culture of a 6× triticale3nulli-tetrasomic wheat into common wheat. Plant Breed 120:39–42

    Article  CAS  Google Scholar 

  • Zhang J, Wellings CR, McIntosh AR, Park FR (2010) Seedling resistances to rust diseases in international triticale germplasm. Crop Pasture Sci 61(12):1036–1048. doi:10.1071/CP10252

    Article  Google Scholar 

  • Żur I, Gołębiowska G, Dubas E, Golemiec E, Matušíková I, Libantová J, Moravčíková J (2013) β-1,3-glucanase and chitinase activities in winter triticales during cold hardening and subsequent infection by Microdochium nivale. Biologia 68(2):241–248. doi:10.2478/s11756-013-0001-0

    Article  CAS  Google Scholar 

  • Zydre K, Lina S, Deveikyte I, Semaskiene R (2008) Development of spring cereal diseases in pea/spring cereal intercrops. Zemdirbyste-Agric 95(3):421–427

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Arseniuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arseniuk, E., Góral, T. (2015). Triticale Biotic Stresses—Known and Novel Foes. In: Eudes, F. (eds) Triticale. Springer, Cham. https://doi.org/10.1007/978-3-319-22551-7_5

Download citation

Publish with us

Policies and ethics