Skip to main content

Thyroid C-Cell Biology and Oncogenic Transformation

  • Chapter
  • First Online:

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 204))

Abstract

The thyroid parafollicular cell, or commonly named “C-cell,” functions in serum calcium homeostasis. Elevations in serum calcium trigger release of calcitonin from the C-cell, which in turn functions to inhibit absorption of calcium by the intestine, resorption of bone by the osteoclast, and reabsorption of calcium by renal tubular cells. Oncogenic transformation of the thyroid C-cell is thought to progress through a hyperplastic process prior to malignancy with increasing levels of serum calcitonin serving as a biomarker for tumor burden. The discovery that multiple endocrine neoplasia type 2 is caused by activating mutations of the RET gene serves to highlight the RET-RAS-MAPK signaling pathway in both initiation and progression of medullary thyroid carcinoma (MTC). Thyroid C-cells are known to express RET at high levels relative to most cell types; therefore, aberrant activation of this receptor is targeted primarily to the C-cell, providing one possible cause of tissue-specific oncogenesis. The role of RET signaling in normal C-cell function is unknown though calcitonin gene transcription appears to be sensitive to RET activation. Beyond RET, the modeling of oncogenesis in animals and screening of human tumors for candidate gene mutations have uncovered mutation of RAS family members and inactivation of Rb1 regulatory pathway as potential mediators of C-cell transformation. A growing understanding of how RET interacts with these pathways, both in normal C-cell function and during oncogenic transformation, will help in the development of novel molecular-targeted therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abu-Khudir R, Paquette J, Lefort A, Libert F, Chanoine JP, Vassart G, Deladoey J (2010) Transcriptome, methylome and genomic variations analysis of ectopic thyroid glands. PLoS ONE 5(10):e13420. doi:10.1371/journal.pone.0013420

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Acton DS, Velthuyzen D, Lips CJ, Hoppener JW (2000) Multiple endocrine neoplasia type 2B mutation in human RET oncogene induces medullary thyroid carcinoma in transgenic mice. Oncogene 19(27):3121–3125. doi:10.1038/sj.onc.1203648

    Article  CAS  PubMed  Google Scholar 

  • Agrawal N, Jiao Y, Sausen M, Leary R, Bettegowda C, Roberts NJ, Bhan S, Ho AS, Khan Z, Bishop J, Westra WH, Wood LD, Hruban RH, Tufano RP, Robinson B, Dralle H, Toledo SP, Toledo RA, Morris LG, Ghossein RA, Fagin JA, Chan TA, Velculescu VE, Vogelstein B, Kinzler KW, Papadopoulos N, Nelkin BD, Ball DW (2013) Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab 98(2):E364–E369. doi:10.1210/jc.2012-2703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ahlgren SC, Bronner-Fraser M (1999) Inhibition of sonic hedgehog signaling in vivo results in craniofacial neural crest cell death. Curr Biol: CB 9(22):1304–1314

    Article  CAS  PubMed  Google Scholar 

  • Andersson L, Westerlund J, Liang S, Carlsson T, Amendola E, Fagman H, Nilsson M (2011) Role of EphA4 receptor signaling in thyroid development: regulation of folliculogenesis and propagation of the C-cell lineage. Endocrinology 152(3):1154–1164. doi:10.1210/en.2010-0232

    Article  CAS  PubMed  Google Scholar 

  • Aoki Y, Niihori T, Kawame H, Kurosawa K, Ohashi H, Tanaka Y, Filocamo M, Kato K, Suzuki Y, Kure S, Matsubara Y (2005) Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet 37(10):1038–1040. doi:10.1038/ng1641

    Article  CAS  PubMed  Google Scholar 

  • Arighi E, Borrello MG, Sariola H (2005) RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 16(4–5):441–467. doi:10.1016/j.cytogfr.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  • Asai N, Iwashita T, Matsuyama M, Takahashi M (1995) Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell Biol 15(3):1613–1619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asai N, Murakami H, Iwashita T, Takahashi M (1996) A mutation at tyrosine 1062 in MEN2A-Ret and MEN2B-Ret impairs their transforming activity and association with shc adaptor proteins. J Biol Chem 271(30):17644–17649

    Article  CAS  PubMed  Google Scholar 

  • Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D, Zhang XF (2001) Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56:127–155

    Article  CAS  PubMed  Google Scholar 

  • Axelrad AA, Leblond CP (1955) Induction of thyroid tumors in rats by a low iodine diet. Cancer 8(2):339–367

    Article  CAS  PubMed  Google Scholar 

  • Baber EC (1876) Contributions to the minute anatomy of the thyroid gland of the dog. Phil Trans R Soc 166:557–568

    Article  Google Scholar 

  • Baetscher M, Schmidt E, Shimizu A, Leder P, Fishman MC (1991) SV40 T antigen transforms calcitonin cells of the thyroid but not CGRP-containing neurons in transgenic mice. Oncogene 6(7):1133–1138

    CAS  PubMed  Google Scholar 

  • Bai F, Pei XH, Nishikawa T, Smith MD, Xiong Y (2007) p18Ink4c, but not p27Kip1, collaborates with Men1 to suppress neuroendocrine organ tumors. Mol Cell Biol 27(4):1495–1504. doi:10.1128/MCB.01764-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR, Wooster R (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91(2):355–358. http://www.sanger.ac.uk/cosmic. doi:10.1038/sj.bjc.6601894

  • Barbieri RB, Bufalo NE, Secolin R, Assumpcao LV, Maciel RM, Cerutti JM, Ward LS (2014) Polymorphisms of cell cycle control genes influence the development of sporadic medullary thyroid carcinoma. Eur J Endocrinol (European Federation of Endocrine Societies) 171(6):761–767. doi:10.1530/EJE-14-0461

    Article  CAS  Google Scholar 

  • Bensley RR (1914) The thyroid gland of the opossum. Anat Rec 8:431

    Article  Google Scholar 

  • Berindan-Neagoe I, Monroig Pdel C, Pasculli B, Calin GA (2014) MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin 64(5):311–336. doi:10.3322/caac.21244

  • Bezniakow N, Gos M, Obersztyn E (2014) The RASopathies as an example of RAS/MAPK pathway disturbances—clinical presentation and molecular pathogenesis of selected syndromes. Dev Period Med 18(3):285–296

    PubMed  Google Scholar 

  • Bjerre Knudsen L, Madsen LW, Andersen S, Almholt K, de Boer AS, Drucker DJ, Gotfredsen C, Egerod FL, Hegelund AC, Jacobsen H, Jacobsen SD, Moses AC, Molck AM, Nielsen HS, Nowak J, Solberg H, Thi TD, Zdravkovic M, Moerch U (2010) Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 151(4):1473–1486. doi:10.1210/en.2009-1272

    Article  PubMed  CAS  Google Scholar 

  • Bockhorn M, Frilling A, Kalinin V, Schroder S, Broelsch CE (2000) Absence of H- and K-ras oncogene mutations in sporadic medullary thyroid carcinoma. Exp Clin Endocrinol Diab: Official J (German Society of Endocrinology [and] German Diabetes Association) 108(1):49–53

    Google Scholar 

  • Boichard A, Croux L, Al Ghuzlan A, Broutin S, Dupuy C, Leboulleux S, Schlumberger M, Bidart JM, Lacroix L (2012) Somatic RAS mutations occur in a large proportion of sporadic RET-negative medullary thyroid carcinomas and extend to a previously unidentified exon. J Clin Endocrinol Metab 97(10):E2031–E2035. doi:10.1210/jc.2012-2092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boorman GA, van Noord MJ, Hollander CF (1972) Naturally occurring medullary thyroid carcinoma in the rat. Arch Pathol 94(1):35–41

    CAS  PubMed  Google Scholar 

  • Borrello MG, Smith DP, Pasini B, Bongarzone I, Greco A, Lorenzo MJ, Arighi E, Miranda C, Eng C, Alberti L et al (1995) RET activation by germline MEN2A and MEN2B mutations. Oncogene 11(11):2419–2427

    CAS  PubMed  Google Scholar 

  • Borrello MG, Alberti L, Arighi E, Bongarzone I, Battistini C, Bardelli A, Pasini B, Piutti C, Rizzetti MG, Mondellini P, Radice MT, Pierotti MA (1996) The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase Cgamma. Mol Cell Biol 16(5):2151–2163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Braydich-Stolle L, Kostereva N, Dym M, Hofmann MC (2007) Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation. Dev Biol 304(1):34–45. doi:10.1016/j.ydbio.2006.12.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brito JM, Teillet MA, Le Douarin NM (2006) An early role for sonic hedgehog from foregut endoderm in jaw development: ensuring neural crest cell survival. Proc Natl Acad Sci USA 103(31):11607–11612. doi:10.1073/pnas.0604751103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown EM (2013) Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab 27(3):333–343. doi:10.1016/j.beem.2013.02.006

    Article  CAS  PubMed  Google Scholar 

  • Buss JE, Solski PA, Schaeffer JP, MacDonald MJ, Der CJ (1989) Activation of the cellular proto-oncogene product p21Ras by addition of a myristylation signal. Science 243(4898):1600–1603

    Article  CAS  PubMed  Google Scholar 

  • Bussolati G, Pearse AG (1967) Immunofluorescent localization of calcitonin in the ‘C’ cells of pig and dog thyroid. J Endocrinol 37(2):205–209

    Article  CAS  PubMed  Google Scholar 

  • Bussolati G, Foster GV, Clark MB, Pearse AG (1969) Immunofluorescent localisation of calcitonin in medullary C-cell thyroid carcinoma, using antibody to the pure porcine hormone. Virchows Arch B: Cell Pathol 2(3):234–238

    CAS  Google Scholar 

  • Cai J, Li L, Ye L, Jiang X, Shen L, Gao Z, Fang W, Huang F, Su T, Zhou Y, Wang W, Ning G (2015) Exome sequencing reveals mutant genes with low penetrance involved in MEN2A-associated tumorigenesis. Endocr Relat Cancer 22(1):23–33. doi:10.1530/ERC-14-0225

    Article  CAS  PubMed  Google Scholar 

  • Carboni JM, Yan N, Cox AD, Bustelo X, Graham SM, Lynch MJ, Weinmann R, Seizinger BR, Der CJ, Barbacid M et al (1995) Farnesyltransferase inhibitors are inhibitors of Ras but not R-Ras2/TC21, transformation. Oncogene 10(10):1905–1913

    CAS  PubMed  Google Scholar 

  • Carniti C, Belluco S, Riccardi E, Cranston AN, Mondellini P, Ponder BA, Scanziani E, Pierotti MA, Bongarzone I (2006) The Ret(C620R) mutation affects renal and enteric development in a mouse model of Hirschsprung's disease. Am J Pathol 168(4):1262–1275. doi:10.2353/ajpath.2006.050607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carson-Walter EB, Smith DP, Ponder BA, Baylin SB, Nelkin BD (1998) Post-transcriptional silencing of RET occurs, but is not required, during raf-1 mediated differentiation of medullary thyroid carcinoma cells. Oncogene 17(3):367–376. doi:10.1038/sj.onc.1201938

    Article  CAS  PubMed  Google Scholar 

  • Castellano E, Downward J (2011) RAS Interaction with PI3K: more than just another effector pathway. Genes Cancer 2(3):261–274. doi:10.1177/1947601911408079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen X, Mitsutake N, LaPerle K, Akeno N, Zanzonico P, Longo VA, Mitsutake S, Kimura ET, Geiger H, Santos E, Wendel HG, Franco A, Knauf JA, Fagin JA (2009) Endogenous expression of Hras(G12V) induces developmental defects and neoplasms with copy number imbalances of the oncogene. Proc Natl Acad Sci USA 106(19):7979–7984. doi:10.1073/pnas.0900343106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93(1):269–309. doi:10.1152/physrev.00003.2012

    Article  CAS  PubMed  Google Scholar 

  • Chinnam M, Goodrich DW (2011) RB1, development, and cancer. Curr Top Dev Biol 94:129–169. doi:10.1016/B978-0-12-380916-2.00005-X

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi SK, Yoon SR, Calabrese P, Arnheim N (2012) Positive selection for new disease mutations in the human germline: evidence from the heritable cancer syndrome multiple endocrine neoplasia type 2B. PLoS Genet 8(2):e1002420. doi:10.1371/journal.pgen.1002420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ciampi R, Mian C, Fugazzola L, Cosci B, Romei C, Barollo S, Cirello V, Bottici V, Marconcini G, Rosa PM, Borrello MG, Basolo F, Ugolini C, Materazzi G, Pinchera A, Elisei R (2013) Evidence of a low prevalence of RAS mutations in a large medullary thyroid cancer series. Thyroid: Official J Am Thyroid Assoc 23(1):50–57. doi:10.1089/thy.2012.0207

    Article  CAS  Google Scholar 

  • Cirstea IC, Kutsche K, Dvorsky R, Gremer L, Carta C, Horn D, Roberts AE, Lepri F, Merbitz-Zahradnik T, Konig R, Kratz CP, Pantaleoni F, Dentici ML, Joshi VA, Kucherlapati RS, Mazzanti L, Mundlos S, Patton MA, Silengo MC, Rossi C, Zampino G, Digilio C, Stuppia L, Seemanova E, Pennacchio LA, Gelb BD, Dallapiccola B, Wittinghofer A, Ahmadian MR, Tartaglia M, Zenker M (2010) A restricted spectrum of NRAS mutations causes Noonan syndrome. Nat Genet 42(1):27–29. doi:10.1038/ng.497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cooper CW, Schwesinger WH, Mahgoub AM, Ontjes DA (1971) Thyrocalcitonin: stimulation of secretion by pentagastrin. Science 172(3989):1238–1240

    Article  CAS  PubMed  Google Scholar 

  • Copp DH (1970) Endocrine regulation of calcium metabolism. Annu Rev Physiol 32:61–86. doi:10.1146/annurev.ph.32.030170.000425

    Article  CAS  PubMed  Google Scholar 

  • Copp DH, Cockcroft DW, Kueh Y (1967) Calcitonin from ultimobranchial glands of dogfish and chickens. Science 158(3803):924–925

    Article  CAS  PubMed  Google Scholar 

  • Cox AD, Hisaka MM, Buss JE, Der CJ (1992) Specific isoprenoid modification is required for function of normal, but not oncogenic, Ras protein. Mol Cell Biol 12(6):2606–2615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ (2014) Drugging the undruggable RAS: mission possible? Nat Rev Drug Discovery 13(11):828–851. doi:10.1038/nrd4389

    Article  CAS  PubMed  Google Scholar 

  • Coxon AB, Ward JM, Geradts J, Otterson GA, Zajac-Kaye M, Kaye FJ (1998) RET cooperates with RB/p53 inactivation in a somatic multi-step model for murine thyroid cancer. Oncogene 17(12):1625–1628. doi:10.1038/sj.onc.1202381

    Article  CAS  PubMed  Google Scholar 

  • Cranston AN, Ponder BA (2003) Modulation of medullary thyroid carcinoma penetrance suggests the presence of modifier genes in a RET transgenic mouse model. Cancer Res 63(16):4777–4780

    CAS  PubMed  Google Scholar 

  • Damo LA, Snyder PW, Franklin DS (2005) Tumorigenesis in p27/p53- and p18/p53-double null mice: functional collaboration between the pRb and p53 pathways. Mol Carcinog 42(2):109–120. doi:10.1002/mc.20068

    Article  CAS  PubMed  Google Scholar 

  • Daripa M, Paula FJ, Rufino AC, Foss MC (2004) Impact of congenital calcitonin deficiency due to dysgenetic hypothyroidism on bone mineral density. Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al] 37(1):61–68

    Google Scholar 

  • Davey RA, Findlay DM (2013) Calcitonin: physiology or fantasy? J Bone Miner Res: Official J Am Soc Bone Miner Res 28(5):973–979. doi:10.1002/jbmr.1869

    Article  CAS  Google Scholar 

  • Davoli T, Xu AW, Mengwasser KE, Sack LM, Yoon JC, Park PJ, Elledge SJ (2013) Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155(4):948–962. doi:10.1016/j.cell.2013.10.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Miguel M, Fernandez-Santos JM, Trigo-Sanchez I, Matera I, Ceccherini I, Martin I, Romeo G, Galera-Davidson H (2003) The Ret proto-oncogene in the WAG/Rij rat strain: an animal model for inherited C-cell carcinoma? Lab Anim 37(3):215–221. doi:10.1258/002367703766453065

    Article  PubMed  Google Scholar 

  • DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E, Livingston DM (1988) SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54(2):275–283

    Article  CAS  PubMed  Google Scholar 

  • DeLellis RA, Nunnemacher G, Bitman WR, Gagel RF, Tashjian AH Jr, Blount M, Wolfe HJ (1979) C-cell hyperplasia and medullary thyroid carcinoma in the rat. An immunohistochemical and ultrastructural analysis. Laboratory Inv: J Tech Meth Pathol 40(2):140–154

    CAS  Google Scholar 

  • Desai AJ, Roberts DJ, Richards GO, Skerry TM (2014) Role of receptor activity modifying protein 1 in function of the calcium sensing receptor in the human TT thyroid carcinoma cell line. PLoS ONE 9(1):e85237. doi:10.1371/journal.pone.0085237

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Di Fiore R, D'Anneo A, Tesoriere G, Vento R (2013) RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J Cell Physiol 228(8):1676–1687. doi:10.1002/jcp.24329

    Article  PubMed  CAS  Google Scholar 

  • Doniach I (1953) The effect of radioactive iodine alone and in combination with methylthiouracil upon tumour production in the rat's thyroid gland. Br J Cancer 7(2):181–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donis-Keller H, Dou S, Chi D, Carlson KM, Toshima K, Lairmore TC, Howe JR, Moley JF, Goodfellow P, Wells SA Jr (1993) Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 2(7):851–856

    Article  CAS  PubMed  Google Scholar 

  • Drosten M, Putzer BM (2006) Mechanisms of Disease: cancer targeting and the impact of oncogenic RET for medullary thyroid carcinoma therapy. Nat Clin Pract Oncol 3(10):564–574. doi:10.1038/ncponc0610

    Article  CAS  PubMed  Google Scholar 

  • Ekholm R, Ericson LE (1968) The ultrastructure of the parafollicular cells of the thyroid gland in the rat. J Ultrastruct Res 23(5):378–402

    Article  CAS  PubMed  Google Scholar 

  • Elisei R, Schlumberger MJ, Muller SP, Schoffski P, Brose MS, Shah MH, Licitra L, Jarzab B, Medvedev V, Kreissl MC, Niederle B, Cohen EE, Wirth LJ, Ali H, Hessel C, Yaron Y, Ball D, Nelkin B, Sherman SI (2013) Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol: Official J Am Soc Clin Oncol 31(29):3639–3646. doi:10.1200/JCO.2012.48.4659

    Article  CAS  Google Scholar 

  • Encinas M, Crowder RJ, Milbrandt J, Johnson EM Jr (2004) Tyrosine 981, a novel ret autophosphorylation site, binds c-Src to mediate neuronal survival. J Biol Chem 279(18):18262–18269. doi:10.1074/jbc.M400505200

    Article  CAS  PubMed  Google Scholar 

  • Esseghir S, Todd SK, Hunt T, Poulsom R, Plaza-Menacho I, Reis-Filho JS, Isacke CM (2007) A role for glial cell derived neurotrophic factor induced expression by inflammatory cytokines and RET/GFR alpha 1 receptor up-regulation in breast cancer. Cancer Res 67(24):11732–11741. doi:10.1158/0008-5472.CAN-07-2343

    Article  CAS  PubMed  Google Scholar 

  • Esteban LM, Vicario-Abejon C, Fernandez-Salguero P, Fernandez-Medarde A, Swaminathan N, Yienger K, Lopez E, Malumbres M, McKay R, Ward JM, Pellicer A, Santos E (2001) Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol Cell Biol 21(5):1444–1452. doi:10.1128/MCB.21.5.1444-1452.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fagman H, Nilsson M (2010) Morphogenesis of the thyroid gland. Mol Cell Endocrinol 323(1):35–54. doi:10.1016/j.mce.2009.12.008

    Article  CAS  PubMed  Google Scholar 

  • Fagman H, Andersson L, Nilsson M (2006) The developing mouse thyroid: embryonic vessel contacts and parenchymal growth pattern during specification, budding, migration, and lobulation. Dev Dyn: Official Pub Am Assoc Anatomists 235(2):444–455. doi:10.1002/dvdy.20653

    Article  CAS  Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer (Journal international du cancer) 136(5):E359–E386. doi:10.1002/ijc.29210

    Article  CAS  Google Scholar 

  • Fernández-Santos JM, Jesús Morillo-Bernal J, Rocío García-Marín R, José Carmelo Utrilla JC, Inés Martín-Lacave I (2012) Paracrine regulation of thyroid-hormone synthesis by C cells. In: Agrawal NK (ed) Thyroid hormone. InTech, Rijeka

    Google Scholar 

  • Figlioli G, Landi S, Romei C, Elisei R, Gemignani F (2013) Medullary thyroid carcinoma (MTC) and RET proto-oncogene: mutation spectrum in the familial cases and a meta-analysis of studies on the sporadic form. Mutat Res 752(1):36–44. doi:10.1016/j.mrrev.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  • Fisher DA (1986) The unique endocrine milieu of the fetus. J Clin Investig 78(3):603–611. doi:10.1172/JCI112616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flicker K, Ulz P, Hoger H, Zeitlhofer P, Haas OA, Behmel A, Buchinger W, Scheuba C, Niederle B, Pfragner R, Speicher MR (2012) High-resolution analysis of alterations in medullary thyroid carcinoma genomes. Int J Cancer (Journal international du cancer) 131(2):E66–E73. doi:10.1002/ijc.26494

    Article  CAS  Google Scholar 

  • Franklin DS, Godfrey VL, O'Brien DA, Deng C, Xiong Y (2000) Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 20(16):6147–6158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fritz A, Walch A, Piotrowska K, Rosemann M, Schaffer E, Weber K, Timper A, Wildner G, Graw J, Hofler H, Atkinson MJ (2002) Recessive transmission of a multiple endocrine neoplasia syndrome in the rat. Cancer Res 62(11):3048–3051

    CAS  PubMed  Google Scholar 

  • Gabe M (1959) Donnees histochimiques sur les cellules parafolliculaires de la glande thyrospacede du chien. Acta Anat 38:332–344

    Article  CAS  PubMed  Google Scholar 

  • Gabe M (1961) Donnees histologiqucs sur les macrothyreocytes (cellules parafolliculaires) de quelques sauropsides et anamniotes. Acta Anat 47:34–54

    Article  CAS  PubMed  Google Scholar 

  • Gainor JF, Shaw AT (2013) The new kid on the block: RET in lung cancer. Cancer Discov 3(6):604–606. doi:10.1158/2159-8290.CD-13-0174

    Article  CAS  PubMed  Google Scholar 

  • Garrett JE, Tamir H, Kifor O, Simin RT, Rogers KV, Mithal A, Gagel RF, Brown EM (1995) Calcitonin-secreting cells of the thyroid express an extracellular calcium receptor gene. Endocrinology 136(11):5202–5211. doi:10.1210/endo.136.11.7588259

    CAS  PubMed  Google Scholar 

  • Godwin MC (1937) Complex IV in the dog with special emphasis on the relation of the ultimobranchial bodies to inter-follicular cells in the post-natal thyroid gland. Am J Anat 60:299–339

    Article  Google Scholar 

  • Gripp KW (2005) Tumor predisposition in Costello syndrome. Am J Med Genet Part C, Semin Med Genet 137C(1):72–77. doi:10.1002/ajmg.c.30065

    Article  Google Scholar 

  • Grubbs EG, Ng PK, Bui J, Busaidy NL, Chen K, Lee JE, Lu X, Lu H, Meric-Bernstam F, Mills GB, Palmer G, Perrier ND, Scott KL, Shaw KR, Waguespack SG, Williams MD, Yelensky R, Cote GJ (2015) RET fusion as a novel driver of medullary thyroid carcinoma. J Clin Endocrinol Metab 100(3):788–793. doi:10.1210/jc.2014-4153

    Article  CAS  PubMed  Google Scholar 

  • Hardin H, Montemayor-Garcia C, Lloyd RV (2013) Thyroid cancer stem-like cells and epithelial-mesenchymal transition in thyroid cancers. Hum Pathol 44(9):1707–1713. doi:10.1016/j.humpath.2013.01.009

    Article  CAS  PubMed  Google Scholar 

  • Harrison DJ, Hooper ML, Armstrong JF, Clarke AR (1995) Effects of heterozygosity for the Rb-1t19neo allele in the mouse. Oncogene 10(8):1615–1620

    CAS  PubMed  Google Scholar 

  • Harvey M, Vogel H, Lee EY, Bradley A, Donehower LA (1995) Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res 55(5):1146–1151

    CAS  PubMed  Google Scholar 

  • Hazard JB, Hawk WA, Crile G Jr (1959) Medullary (solid) carcinoma of the thyroid; a clinicopathologic entity. J Clin Endocrinol Metab 19(1):152–161. doi:10.1210/jcem-19-1-152

    Article  CAS  PubMed  Google Scholar 

  • Hennessy JF, Gray TK, Cooper CW, Ontjes DA (1973) Stimulation of thyrocalcitonin secretion by pentagastrin and calcium in 2 patients with medullary carcinoma of the thyroid. J Clin Endocrinol Metab 36(1):200–203. doi:10.1210/jcem-36-1-200

    Article  CAS  PubMed  Google Scholar 

  • Hoff AO, Catala-Lehnen P, Thomas PM, Priemel M, Rueger JM, Nasonkin I, Bradley A, Hughes MR, Ordonez N, Cote GJ, Amling M, Gagel RF (2002) Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene. J Clin Investig 110(12):1849–1857. doi:10.1172/JCI14218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hofmann MC (2008) Gdnf signaling pathways within the mammalian spermatogonial stem cell niche. Mol Cell Endocrinol 288(1–2):95–103. doi:10.1016/j.mce.2008.04.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hofmann MC, Braydich-Stolle L, Dym M (2005) Isolation of male germ-line stem cells; influence of GDNF. Dev Biol 279(1):114–124. doi:10.1016/j.ydbio.2004.12.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y, Pasini B, Hoppener JW, van Amstel HK, Romeo G et al (1994) A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367(6461):375–376. doi:10.1038/367375a0

    Article  CAS  PubMed  Google Scholar 

  • Holm R, Nesland JM (1994) Retinoblastoma and p53 tumour suppressor gene protein expression in carcinomas of the thyroid gland. J Pathol 172(3):267–272. doi:10.1002/path.1711720307

    Article  CAS  PubMed  Google Scholar 

  • Horie H, Yokogoshi Y, Tsuyuguchi M, Saito S (1995) Point mutations of ras and Gs alpha subunit genes in thyroid tumors. Jpn J Cancer Res: Gann 86(8):737–742

    Article  CAS  PubMed  Google Scholar 

  • Hu MI, Cote GJ (2012) Medullary thyroid carcinoma: who's on first? Thyroid: Official J Am Thyroid Assoc 22(5):451–453. doi:10.1089/thy.2012.2205.ed

    Article  Google Scholar 

  • Ito Y, Okada Y, Sato M, Sawai H, Funahashi H, Murase T, Hayakawa T, Manabe T (2005a) Expression of glial cell line-derived neurotrophic factor family members and their receptors in pancreatic cancers. Surgery 138(4):788–794. doi:10.1016/j.surg.2005.07.007

    Article  PubMed  Google Scholar 

  • Ito Y, Yoshida H, Nakamura Y, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, Kuma K, Kakudo K, Miyauchi A (2005b) Expression of Jun activation domain-binding protein 1 and p27 (Kip1) in thyroid medullary carcinoma. Pathology 37(3):216–219

    Article  CAS  PubMed  Google Scholar 

  • Iwashita T, Kruger GM, Pardal R, Kiel MJ, Morrison SJ (2003) Hirschsprung disease is linked to defects in neural crest stem cell function. Science 301(5635):972–976. doi:10.1126/science.1085649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359(6393):295–300. doi:10.1038/359295a0

    Article  CAS  PubMed  Google Scholar 

  • Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E, Bronson RT, Umanoff H, Edelmann W, Kucherlapati R, Jacks T (1997) K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev 11(19):2468–2481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnston D, Hatzis D, Sunday ME (1998) Expression of v-Ha-ras driven by the calcitonin/calcitonin gene-related peptide promoter: a novel transgenic murine model for medullary thyroid carcinoma. Oncogene 16(2):167–177. doi:10.1038/sj.onc.1201478

    Article  CAS  PubMed  Google Scholar 

  • Jordan RK, Scothorne RJ (1972) An electron microscopic study of the ultimobranchial body of the sheep embryo. J Anat 111(Pt 3):501–503

    CAS  PubMed  Google Scholar 

  • Jubb KV, Mc EK (1959) The relationship of ultimobranchial remnants and derivatives to tumors of the thyroid gland in cattle. The Cornell veterinarian 49 (1):41–43 passim

    Google Scholar 

  • Kameda Y, Nishimaki T, Miura M, Jiang SX, Guillemot F (2007a) Mash1 regulates the development of C cells in mouse thyroid glands. Dev Dynamics: Official Publ Am Assoc Anatomists 236(1):262–270. doi:10.1002/dvdy.21018

    Article  CAS  Google Scholar 

  • Kameda Y, Nishimaki T, Chisaka O, Iseki S, Sucov HM (2007b) Expression of the epithelial marker E-cadherin by thyroid C cells and their precursors during murine development. J Histochem Cytochem: Official J Histochem Soc 55(10):1075–1088. doi:10.1369/jhc.7A7179.2007

    Article  CAS  Google Scholar 

  • Kanagal-Shamanna R, Portier BP, Singh RR, Routbort MJ, Aldape KD, Handal BA, Rahimi H, Reddy NG, Barkoh BA, Mishra BM, Paladugu AV, Manekia JH, Kalhor N, Chowdhuri SR, Staerkel GA, Medeiros LJ, Luthra R, Patel KP (2014) Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics. Mod Pathol: Official J US Can Acad Pathol, Inc 27(2):314–327. doi:10.1038/modpathol.2013.122

  • Kawai K, Iwashita T, Murakami H, Hiraiwa N, Yoshiki A, Kusakabe M, Ono K, Iida K, Nakayama A, Takahashi M (2000) Tissue-specific carcinogenesis in transgenic mice expressing the RET proto-oncogene with a multiple endocrine neoplasia type 2A mutation. Cancer Res 60(18):5254–5260

    CAS  PubMed  Google Scholar 

  • Kawamoto Y, Takeda K, Okuno Y, Yamakawa Y, Ito Y, Taguchi R, Kato M, Suzuki H, Takahashi M, Nakashima I (2004) Identification of RET autophosphorylation sites by mass spectrometry. J Biol Chem 279(14):14213–14224. doi:10.1074/jbc.M312600200

    Article  CAS  PubMed  Google Scholar 

  • Kedzia C, Lacroix L, Ameur N, Ragot T, Kelly PA, Caillou B, Binart N (2005) Medullary thyroid carcinoma arises in the absence of prolactin signaling. Cancer Res 65(18):8497–8503. doi:10.1158/0008-5472.CAN-04-3937

    Article  CAS  PubMed  Google Scholar 

  • Kent ML, Harper C, Wolf JC (2012) Documented and potential research impacts of subclinical diseases in zebrafish. ILAR J (National Research Council, Institute of Laboratory Animal Resources) 53(2):126–134. doi:10.1093/ilar.53.2.126

    Article  CAS  Google Scholar 

  • Knowles PP, Murray-Rust J, Kjaer S, Scott RP, Hanrahan S, Santoro M, Ibanez CF, McDonald NQ (2006) Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem 281(44):33577–33587. doi:10.1074/jbc.M605604200

    Article  CAS  PubMed  Google Scholar 

  • Knudsen ES, Wang JY (2010) Targeting the RB-pathway in cancer therapy. Clin Cancer Res: Official J Am Assoc Cancer Res 16(4):1094–1099. doi:10.1158/1078-0432.CCR-09-0787

    Article  CAS  Google Scholar 

  • Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68(4):820–823

    Article  PubMed Central  PubMed  Google Scholar 

  • Koera K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K, Hatta T, Otani H, Aiba A, Katsuki M (1997) K-ras is essential for the development of the mouse embryo. Oncogene 15(10):1151–1159. doi:10.1038/sj.onc.1201284

    Article  CAS  PubMed  Google Scholar 

  • Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, Sakamoto H, Tsuta K, Furuta K, Shimada Y, Iwakawa R, Ogiwara H, Oike T, Enari M, Schetter AJ, Okayama H, Haugen A, Skaug V, Chiku S, Yamanaka I, Arai Y, Watanabe S, Sekine I, Ogawa S, Harris CC, Tsuda H, Yoshida T, Yokota J, Shibata T (2012) KIF5B-RET fusions in lung adenocarcinoma. Nat Med 18(3):375–377. doi:10.1038/nm.2644

    Article  CAS  PubMed  Google Scholar 

  • Kracht J, Hachmeister J, Kruse H (1968a) Thyrocalcitonin and the C cells of the thyroid gland. Munchener medizinische Wochenschrift 110(4):203–208

    CAS  PubMed  Google Scholar 

  • Kracht J, Hachmeister U, Breustedt HJ, Lenke M (1968b) Immunohistological studies on thyrocalcitonin in C-cells. Endokrinologie 52(5):395–401

    PubMed  Google Scholar 

  • Kramer ER, Aron L, Ramakers GM, Seitz S, Zhuang X, Beyer K, Smidt MP, Klein R (2007) Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 5(3):e39. doi:10.1371/journal.pbio.0050039

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kucerova L, Feketeova L, Kozovska Z, Poturnajova M, Matuskova M, Nencka R, Babal P (2014) In vivo 5FU-exposed human medullary thyroid carcinoma cells contain a chemoresistant CD133+ tumor-initiating cell subset. Thyroid: Official J Am Thyroid Assoc 24(3):520–532. doi:10.1089/thy.2013.0277

    Article  CAS  Google Scholar 

  • Kusakabe T, Hoshi N, Kimura S (2006) Origin of the ultimobranchial body cyst: T/ebp/Nkx2.1 expression is required for development and fusion of the ultimobranchial body to the thyroid. Dev Dyn: Official Pub Am Assoc Anatomists 235(5):1300–1309. doi:10.1002/dvdy.20655

  • Lafont AG, Wang YF, Chen GD, Liao BK, Tseng YC, Huang CJ, Hwang PP (2011) Involvement of calcitonin and its receptor in the control of calcium-regulating genes and calcium homeostasis in zebrafish (Danio rerio). J Bone Miner Res: Official J Am Soc Bone Miner Res 26(5):1072–1083. doi:10.1002/jbmr.301

    Article  CAS  Google Scholar 

  • Lanigan TM, DeRaad SK, Russo AF (1998) Requirement of the MASH-1 transcription factor for neuroendocrine differentiation of thyroid C cells. J Neurobiol 34(2):126–134

    Article  CAS  PubMed  Google Scholar 

  • Lausson S, Volle GE, Bourges M, Pidoux E, Borrel C, Milhaud G, Moukhtar MS, Jullienne A, Treilhou-Lahille F (1995) Calcitonin secretion, C cell differentiation and proliferation during the spontaneous development of murine medullary thyroid carcinoma. Virchows Arch: Int J Pathol 426(6):611–617

    Article  CAS  Google Scholar 

  • Le Douarin N, Le Lievre C (1970) Demonstration of neural origin of calcitonin cells of ultimobranchial body of chick embryo. Comptes rendus hebdomadaires des seances de l'Academie des sciences Serie D: Sciences naturelles 270(23):2857–2860

    Google Scholar 

  • Liao J, Kochilas L, Nowotschin S, Arnold JS, Aggarwal VS, Epstein JA, Brown MC, Adams J, Morrow BE (2004) Full spectrum of malformations in velo-cardio-facial syndrome/DiGeorge syndrome mouse models by altering Tbx1 dosage. Hum Mol Genet 13(15):1577–1585. doi:10.1093/hmg/ddh176

    Article  CAS  PubMed  Google Scholar 

  • Lindahl M, Timmusk T, Rossi J, Saarma M, Airaksinen MS (2000) Expression and alternative splicing of mouse Gfra4 suggest roles in endocrine cell development. Mol Cell Neurosci 15(6):522–533. doi:10.1006/mcne.2000.0845

    Article  CAS  PubMed  Google Scholar 

  • Lindfors PH, Lindahl M, Rossi J, Saarma M, Airaksinen MS (2006) Ablation of persephin receptor glial cell line-derived neurotrophic factor family receptor alpha4 impairs thyroid calcitonin production in young mice. Endocrinology 147(5):2237–2244. doi:10.1210/en.2005-1620

    Article  CAS  PubMed  Google Scholar 

  • Lindsay S, Nichols CW (1969) Medullary thyroid carcinoma and parathyroid hyperplasia in rats. Arch Pathol 88(4):402–406

    CAS  PubMed  Google Scholar 

  • Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, Curran JA, Balasubramanian S, Bloom T, Brennan KW, Donahue A, Downing SR, Frampton GM, Garcia L, Juhn F, Mitchell KC, White E, White J, Zwirko Z, Peretz T, Nechushtan H, Soussan-Gutman L, Kim J, Sasaki H, Kim HR, Park SI, Ercan D, Sheehan CE, Ross JS, Cronin MT, Janne PA, Stephens PJ (2012) Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 18(3):382–384. doi:10.1038/nm.2673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Vega QC, Decker RA, Pandey A, Worby CA, Dixon JE (1996) Oncogenic RET receptors display different autophosphorylation sites and substrate binding specificities. J Biol Chem 271(10):5309–5312

    Article  CAS  PubMed  Google Scholar 

  • Luesma MJ, Cantarero I, Alvarez-Dotu JM, Santander S, Junquera C (2014) New insights into c-Ret signalling pathway in the enteric nervous system and its relationship with ALS. BioMed Res Int 2014:328348. doi:10.1155/2014/328348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lupulescu A (1972) Effect of calcitonin on rabbit thyroid glands. Endocrinology 90(4):1046–1054. doi:10.1210/endo-90-4-1046

    Article  CAS  PubMed  Google Scholar 

  • Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318. doi:10.1038/nrm2672

    Article  PubMed  CAS  Google Scholar 

  • Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3(6):459–465. doi:10.1038/nrc1097

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Pellicer A (1998) RAS pathways to cell cycle control and cell transformation. Front Biosci: J Virtual Libr 3:d887–d912

    CAS  Google Scholar 

  • Manikandan M, Raksha G, Munirajan AK (2012) Haploinsufficiency of tumor suppressor genes is driven by the cumulative effect of microRNAs, microRNA binding site polymorphisms and microRNA polymorphisms: an in silico approach. Cancer Inform 11:157–171. doi:10.4137/CIN.S10176

    PubMed Central  CAS  PubMed  Google Scholar 

  • Manley NR, Capecchi MR (1998) Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev Biol 195(1):1–15. doi:10.1006/dbio.1997.8827

    Article  CAS  PubMed  Google Scholar 

  • Martin-Lacave I, Bernab R, Sampedro C, Conde E, Fernandez-Santos JM, San Martin MV, Beato A, Galera-Davidson H (1999) Correlation between gender and spontaneous C-cell tumors in the thyroid gland of the Wistar rat. Cell Tissue Res 297(3):451–457

    Article  CAS  PubMed  Google Scholar 

  • Mathew CG, Smith BA, Thorpe K, Wong Z, Royle NJ, Jeffreys AJ, Ponder BA (1987) Deletion of genes on chromosome 1 in endocrine neoplasia. Nature 328(6130):524–526. doi:10.1038/328524a0

    Article  CAS  PubMed  Google Scholar 

  • Matoso A, Zhou Z, Hayama R, Flesken-Nikitin A, Nikitin AY (2008) Cell lineage-specific interactions between Men1 and Rb in neuroendocrine neoplasia. Carcinogenesis 29(3):620–628. doi:10.1093/carcin/bgm207

    Article  CAS  PubMed  Google Scholar 

  • May CL, Kaestner KH (2010) Gut endocrine cell development. Mol Cell Endocrinol 323(1):70–75. doi:10.1016/j.mce.2009.12.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284. doi:10.1016/j.bbamcr.2006.10.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Melvin KE, Tashjian AH Jr (1968) The syndrome of excessive thyrocalcitonin produced by medullary carcinoma of the thyroid. Proc Natl Acad Sci USA 59(4):1216–1222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Melvin KE, Miller HH, Tashjian AH Jr (1971) Early diagnosis of medullary carcinoma of the thyroid gland by means of calcitonin assay. N Engl J Med 285(20):1115–1120. doi:10.1056/NEJM197111112852004

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola H (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287(5457):1489–1493

    Article  CAS  PubMed  Google Scholar 

  • Michiels FM, Chappuis S, Caillou B, Pasini A, Talbot M, Monier R, Lenoir GM, Feunteun J, Billaud M (1997) Development of medullary thyroid carcinoma in transgenic mice expressing the RET protooncogene altered by a multiple endocrine neoplasia type 2A mutation. Proc Natl Acad Sci USA 94(7):3330–3335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milburn MV, Tong L, deVos AM, Brunger A, Yamaizumi Z, Nishimura S, Kim SH (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247(4945):939–945

    Article  CAS  PubMed  Google Scholar 

  • Moley JF, Brother MB, Wells SA, Spengler BA, Biedler JL, Brodeur GM (1991) Low frequency of ras gene mutations in neuroblastomas, pheochromocytomas, and medullary thyroid cancers. Cancer Res 51(6):1596–1599

    CAS  PubMed  Google Scholar 

  • Morandi A, Martin LA, Gao Q, Pancholi S, Mackay A, Robertson D, Zvelebil M, Dowsett M, Plaza-Menacho I, Isacke CM (2013) GDNF-RET signaling in ER-positive breast cancers is a key determinant of response and resistance to aromatase inhibitors. Cancer Res 73(12):3783–3795. doi:10.1158/0008-5472.CAN-12-4265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moseley JM, Matthews EW, Breed RH, Galante L, Tse A, MacIntyre I (1968) The ultimobranchial origin of calcitonin. Lancet 1(7534):108–110

    Article  CAS  PubMed  Google Scholar 

  • Moura MM, Cavaco BM, Pinto AE, Leite V (2011) High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J Clin Endocrinol Metab 96(5):E863–E868. doi:10.1210/jc.2010-1921

    Article  CAS  PubMed  Google Scholar 

  • Mulligan LM (2014) RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer 14(3):173–186. doi:10.1038/nrc3680

    Article  CAS  PubMed  Google Scholar 

  • Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E, Love DR, Mole SE, Moore JK, Papi L et al (1993) Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363(6428):458–460. doi:10.1038/363458a0

    Article  CAS  PubMed  Google Scholar 

  • Muszynski M, Birnbaum RS, Roos BA (1983) Glucocorticoids stimulate the production of preprocalcitonin-derived secretory peptides by a rat medullary thyroid carcinoma cell line. J Biol Chem 258(19):11678–11683

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Mabry M, de Bustros A, Ihle JN, Nelkin BD, Baylin SB (1987) Introduction of v-Ha-ras oncogene induces differentiation of cultured human medullary thyroid carcinoma cells. Proc Natl Acad Sci USA 84(16):5923–5927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen TT, Heath H III, Bryant SC, O'Fallon WM, Melton LJ III (1997) Fractures after thyroidectomy in men: a population-based cohort study. J Bone Miner Res: Official J Am Soc Bone Miner Res 12(7):1092–1099. doi:10.1359/jbmr.1997.12.7.1092

    Article  CAS  Google Scholar 

  • Nikitin AY, Liu CY, Flesken-Nikitin A, Chen CF, Chen PL, Lee WH (2002) Cell lineage-specific effects associated with multiple deficiencies of tumor susceptibility genes in Msh2(−/−)Rb(+/−) mice. Cancer Res 62(18):5134–5138

    CAS  PubMed  Google Scholar 

  • Nilsson M, Fagman H (2013) Mechanisms of thyroid development and dysgenesis: an analysis based on developmental stages and concurrent embryonic anatomy. Curr Top Dev Biol 106:123–170. doi:10.1016/B978-0-12-416021-7.00004-3

    Article  CAS  PubMed  Google Scholar 

  • Nonidez FJ (1932a) The origin of the “parafollicular” cell, a second epithelial component of the thyroid of the dog. Am J Anat 49:479–495

    Article  Google Scholar 

  • Nonidez FJ (1932b) Further observations on the parafollicular cells of the mammalian thyroid. Anat Rec 53:339–347

    Article  Google Scholar 

  • Okabe M, Graham A (2004) The origin of the parathyroid gland. Proc Natl Acad Sci USA 101(51):17716–17719. doi:10.1073/pnas.0406116101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okazaki K, Sagata N (1995) MAP kinase activation is essential for oncogenic transformation of NIH3T3 cells by Mos. Oncogene 10(6):1149–1157

    CAS  PubMed  Google Scholar 

  • Okazaki M, Miya A, Tanaka N, Miki T, Yamamoto M, Motomura K, Miyauchi A, Mori T, Takai S (1989) Allele loss on chromosome 10 and point mutation of ras oncogenes are infrequent in tumors of MEN 2A. Henry Ford Hosp Med J 37(3–4):112–115

    CAS  PubMed  Google Scholar 

  • O'Toole K, Fenoglio-Preiser C, Pushparaj N (1985) Endocrine changes associated with the human aging process: III. Effect of age on the number of calcitonin immunoreactive cells in the thyroid gland. Hum Pathol 16(10):991–1000

    Article  PubMed  Google Scholar 

  • Ozaki T, Matsubara T, Seo D, Okamoto M, Nagashima K, Sasaki Y, Hayase S, Murata T, Liao XH, Hanson J, Rodriguez-Canales J, Thorgeirsson SS, Kakudo K, Refetoff S, Kimura S (2012) Thyroid regeneration: characterization of clear cells after partial thyroidectomy. Endocrinology 153(5):2514–2525. doi:10.1210/en.2011-1365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park MS, Rosai J, Nguyen HT, Capodieci P, Cordon-Cardo C, Koff A (1999) p27 and Rb are on overlapping pathways suppressing tumorigenesis in mice. Proc Natl Acad Sci USA 96(11):6382–6387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pasini B, Hofstra RM, Yin L, Bocciardi R, Santamaria G, Grootscholten PM, Ceccherini I, Patrone G, Priolo M, Buys CH et al (1995) The physical map of the human RET proto-oncogene. Oncogene 11(9):1737–1743

    CAS  PubMed  Google Scholar 

  • Pasquali D, Circelli L, Faggiano A, Pancione M, Renzullo A, Elisei R, Romei C, Accardo G, Coppola VR, De Palma M, Ferolla P, Grimaldi F, Colao A, Colantuoni V (2011) CDKN1B V109G polymorphism a new prognostic factor in sporadic medullary thyroid carcinoma. Eur J Endocrinol (European Federation of Endocrine Societies) 164(3):397–404. doi:10.1530/EJE-10-0929

    Article  CAS  Google Scholar 

  • Pearse AG (1966a) Common cytochemical properties of cells producing polypeptide hormones, with particular reference to calcitonin and the thyroid C cells. Vet Rec 79(21):587–590

    Article  CAS  PubMed  Google Scholar 

  • Pearse AG (1966b) 5-hydroxytryptophan uptake by dog thyroid ‘C' cells, and its possible significance in polypeptide hormone production. Nature 211(5049):598–600

    Article  CAS  PubMed  Google Scholar 

  • Pearse AG (1966c) The cytochemistry of the thyroid C cells and their relationship to calcitonin. Proc R Soc Lond Ser B (Containing papers of a Biological character Royal Society) 164(996):478–487

    Article  CAS  Google Scholar 

  • Pearse AG, Carvalheira AF (1967) Cytochemical evidence for an ultimobranchial origin of rodent thyroid C cells. Nature 214(5091):929–930

    Article  CAS  PubMed  Google Scholar 

  • Pearse AG, Polak JM (1971) Cytochemical evidence for the neural crest origin of mammalian ultimobranchial C cells. Histochemie Histochem Histochimie 27(2):96–102

    CAS  Google Scholar 

  • Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Hofler H, Fend F, Graw J, Atkinson MJ (2006) Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 103(42):15558–15563. doi:10.1073/pnas.0603877103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plaza-Menacho I, Morandi A, Robertson D, Pancholi S, Drury S, Dowsett M, Martin LA, Isacke CM (2010) Targeting the receptor tyrosine kinase RET sensitizes breast cancer cells to tamoxifen treatment and reveals a role for RET in endocrine resistance. Oncogene 29(33):4648–4657. doi:10.1038/onc.2010.209

    Article  CAS  PubMed  Google Scholar 

  • Plaza-Menacho I, Mologni L, McDonald NQ (2014) Mechanisms of RET signaling in cancer: current and future implications for targeted therapy. Cell Signal 26(8):1743–1752. doi:10.1016/j.cellsig.2014.03.032

    Article  CAS  PubMed  Google Scholar 

  • Polak JM, Pearse AG, Le Lievre C, Fontaine J, Le Douarin NM (1974) Immunocytochemical confirmation of the neural crest origin of avian calcitonin-producing cells. Histochemistry 40(3):209–214

    Article  CAS  PubMed  Google Scholar 

  • Pozo K, Castro-Rivera E, Tan C, Plattner F, Schwach G, Siegl V, Meyer D, Guo A, Gundara J, Mettlach G, Richer E, Guevara J, Ning L, Gupta A, Hao G, Tsai L, Sun X, Antich P, Sidhu S, Robinson B, Chen H, Nwariaku F, Pfragner R, Richardson J, Bibb J (2013) The role of Cdk5 in neuroendocrine thyroid cancer. Cancer Cell 24(4):499–511

    Article  CAS  PubMed  Google Scholar 

  • Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72(10):2457–2467. doi:10.1158/0008-5472.CAN-11-2612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pueblitz S, Weinberg AG, Albores-Saavedra J (1993) Thyroid C cells in the DiGeorge anomaly: a quantitative study. Pediatr Pathol (Affiliated with the International Paediatric Pathology Association) 13(4):463–473

    CAS  Google Scholar 

  • Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11(11):761–774. doi:10.1038/nrc3106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rauen KA (2013) The RASopathies. Annu Rev Genomics Hum Genet 14:355–369. doi:10.1146/annurev-genom-091212-153523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reubi JC, Waser B (1996) Unexpected high incidence of cholecystokinin-B/gastrin receptors in human medullary thyroid carcinomas. Int J Cancer (Journal international du cancer) 67(5):644–647. doi:10.1002/(SICI)1097-0215(19960904)67:5<644:AID-IJC9>3.0.CO;2-U

    Article  CAS  Google Scholar 

  • Reynolds L, Jones K, Winton DJ, Cranston A, Houghton C, Howard L, Ponder BA, Smith DP (2001) C-cell and thyroid epithelial tumours and altered follicular development in transgenic mice expressing the long isoform of MEN 2A RET. Oncogene 20(30):3986–3994. doi:10.1038/sj.onc.1204434

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370(6490):527–532. doi:10.1038/370527a0

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Shibata K (1957) Parafollicular cell in the rat thyroid. Endocrinologia Jpn 4(4):253–261

    Article  CAS  Google Scholar 

  • Salvatore D, Melillo RM, Monaco C, Visconti R, Fenzi G, Vecchio G, Fusco A, Santoro M (2001) Increased in vivo phosphorylation of ret tyrosine 1062 is a potential pathogenetic mechanism of multiple endocrine neoplasia type 2B. Cancer Res 61(4):1426–1431

    CAS  PubMed  Google Scholar 

  • Santoro M, Carlomagno F (2013) Central role of RET in thyroid cancer. Cold Spring Harb Perspect Biol 5(12):a009233. doi:10.1101/cshperspect.a009233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, Fusco A, Vecchio G, Matoskova B, Kraus MH et al (1995) Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 267(5196):381–383

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101. doi:10.1126/science.1106148

    Article  CAS  PubMed  Google Scholar 

  • Sawai H, Okada Y, Kazanjian K, Kim J, Hasan S, Hines OJ, Reber HA, Hoon DS, Eibl G (2005) The G691S RET polymorphism increases glial cell line-derived neurotrophic factor-induced pancreatic cancer cell invasion by amplifying mitogen-activated protein kinase signaling. Cancer Res 65(24):11536–11544. doi:10.1158/0008-5472.CAN-05-2843

    Article  CAS  PubMed  Google Scholar 

  • Schubbert S, Zenker M, Rowe SL, Boll S, Klein C, Bollag G, van der Burgt I, Musante L, Kalscheuer V, Wehner LE, Nguyen H, West B, Zhang KY, Sistermans E, Rauch A, Niemeyer CM, Shannon K, Kratz CP (2006) Germline KRAS mutations cause Noonan syndrome. Nat Genet 38(3):331–336. doi:10.1038/ng1748

    Article  CAS  PubMed  Google Scholar 

  • Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367(6461):380–383. doi:10.1038/367380a0

    Article  CAS  PubMed  Google Scholar 

  • Schuff KG, Hentges ST, Kelly MA, Binart N, Kelly PA, Iuvone PM, Asa SL, Low MJ (2002) Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and -independent mechanisms. J Clin Investig 110(7):973–981. doi:10.1172/JCI15912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuhmacher AJ, Guerra C, Sauzeau V, Canamero M, Bustelo XR, Barbacid M (2008) A mouse model for Costello syndrome reveals an Ang II-mediated hypertensive condition. J Clin Investig 118(6):2169–2179. doi:10.1172/JCI34385

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schulten HJ, Al-Maghrabi J, Al-Ghamdi K, Salama S, Al-Muhayawi S, Chaudhary A, Hamour O, Abuzenadah A, Gari M, Al-Qahtani M (2011) Mutational screening of RET, HRAS, KRAS, NRAS, BRAF, AKT1, and CTNNB1 in medullary thyroid carcinoma. Anticancer Res 31(12):4179–4183

    CAS  PubMed  Google Scholar 

  • Schulz N, Propst F, Rosenberg MP, Linnoila RI, Paules RS, Kovatch R, Ogiso Y, Vande Woude G (1992) Pheochromocytomas and C-cell thyroid neoplasms in transgenic c-mos mice: a model for the human multiple endocrine neoplasia type 2 syndrome. Cancer Res 52(2):450–455

    CAS  PubMed  Google Scholar 

  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR (2000) Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14(19):2501–2514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seecof DP (1927) Studies on mitochondria: II. The occurrence of mitochondria-rich and mitochondria-poor cells in the thyroid gland of man and animals. Am J Pathol 3(4):365–384, 369

    Google Scholar 

  • Sekiya T, Bronstein MD, Benfini K, Longuini VC, Jallad RS, Machado MC, Goncalves TD, Osaki LH, Higashi L, Viana-Jr J, Kater C, Lee M, Molatore S, Francisco G, Chammas R, Naslavsky MS, Schlesinger D, Gama P, Duarte YA, Lebrao ML, Zatz M, Meirelles O, Liberman B, Fragoso MC, Toledo SP, Pellegata NS, Toledo RA (2014) p27 variant and corticotropinoma susceptibility: a genetic and in vitro study. Endocr Relat Cancer 21(3):395–404. doi:10.1530/ERC-13-0486

    Article  CAS  PubMed  Google Scholar 

  • Shirasawa S, Furuse M, Yokoyama N, Sasazuki T (1993) Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 260(5104):85–88

    Article  CAS  PubMed  Google Scholar 

  • Simbolo M, Mian C, Barollo S, Fassan M, Mafficini A, Neves D, Scardoni M, Pennelli G, Rugge M, Pelizzo MR, Cavedon E, Fugazzola L, Scarpa A (2014) High-throughput mutation profiling improves diagnostic stratification of sporadic medullary thyroid carcinomas. Virchows Arch: Int J Pathol 465(1):73–78. doi:10.1007/s00428-014-1589-3

    Article  CAS  Google Scholar 

  • Smith-Hicks CL, Sizer KC, Powers JF, Tischler AS, Costantini F (2000) C-cell hyperplasia, pheochromocytoma and sympathoadrenal malformation in a mouse model of multiple endocrine neoplasia type 2B. EMBO J 19(4):612–622. doi:10.1093/emboj/19.4.612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Songyang Z, Carraway KL III, Eck MJ, Harrison SC, Feldman RA, Mohammadi M, Schlessinger J, Hubbard SR, Smith DP, Eng C et al (1995) Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature 373(6514):536–539. doi:10.1038/373536a0

    Article  CAS  PubMed  Google Scholar 

  • Spitsbergen JM, Buhler DR, Peterson TS (2012) Neoplasia and neoplasm-associated lesions in laboratory colonies of zebrafish emphasizing key influences of diet and aquaculture system design. ILAR J (National Research Council, Institute of Laboratory Animal Resources) 53(2):114–125. doi:10.1093/ilar.53.2.114

    Article  CAS  Google Scholar 

  • Staal SP (1987) Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA 84(14):5034–5037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stephen AG, Esposito D, Bagni RK, McCormick F (2014) Dragging ras back in the ring. Cancer Cell 25(3):272–281. doi:10.1016/j.ccr.2014.02.017

    Article  CAS  PubMed  Google Scholar 

  • Stoeckel ME, Porte A (1969) Ultrastructural study of ultimobranchial body of chicken. I. Normal aspect and embryonal development. Zeitschrift fur Zellforschung und mikroskopische Anatomie 94(4):495–512

    Google Scholar 

  • Takagi K (1922–1923) A cytological study on the dog's thyroid gland. Folia Anat Jpn 1:69

    Google Scholar 

  • Takahashi C, Contreras B, Iwanaga T, Takegami Y, Bakker A, Bronson RT, Noda M, Loda M, Hunt JL, Ewen ME (2006) Nras loss induces metastatic conversion of Rb1-deficient neuroendocrine thyroid tumor. Nat Genet 38(1):118–123. doi:10.1038/ng1703

    Article  CAS  PubMed  Google Scholar 

  • Tauber SD (1967) The ultimobranchial origin of thyrocalcitonin. Proc Natl Acad Sci USA 58(4):1684–1687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Testaz S, Jarov A, Williams KP, Ling LE, Koteliansky VE, Fournier-Thibault C, Duband JL (2001) Sonic hedgehog restricts adhesion and migration of neural crest cells independently of the Patched- Smoothened-Gli signaling pathway. Proc Natl Acad Sci USA 98(22):12521–12526. doi:10.1073/pnas.221108698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas PM, Nasonkin I, Zhang H, Gagel RF, Cote GJ (2001) Structure of the mouse calcitonin/calcitonin gene-related peptide alpha and beta genes. DNA Seq: J DNA Sequencing Mapp 12(2):131–135

    CAS  Google Scholar 

  • Thomas D, Friedman S, Lin RY (2008) Thyroid stem cells: lessons from normal development and thyroid cancer. Endocr Relat Cancer 15(1):51–58. doi:10.1677/ERC-07-0210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toki H, Inoue M, Minowa O, Motegi H, Saiki Y, Wakana S, Masuya H, Gondo Y, Shiroishi T, Yao R, Noda T (2014) Novel retinoblastoma mutation abrogating the interaction to E2F2/3, but not E2F1, led to selective suppression of thyroid tumors. Cancer Sci 105(10):1360–1368. doi:10.1111/cas.12495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Umanoff H, Edelmann W, Pellicer A, Kucherlapati R (1995) The murine N-ras gene is not essential for growth and development. Proc Natl Acad Sci USA 92(5):1709–1713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Veelen W, van Gasteren CJ, Acton DS, Franklin DS, Berger R, Lips CJ, Hoppener JW (2008) Synergistic effect of oncogenic RET and loss of p18 on medullary thyroid carcinoma development. Cancer Res 68(5):1329–1337. doi:10.1158/0008-5472.CAN-07-5754

    Article  PubMed  CAS  Google Scholar 

  • van Veelen W, Klompmaker R, Gloerich M, van Gasteren CJ, Kalkhoven E, Berger R, Lips CJ, Medema RH, Hoppener JW, Acton DS (2009) P18 is a tumor suppressor gene involved in human medullary thyroid carcinoma and pheochromocytoma development. Int J Cancer (Journal international du cancer) 124(2):339–345. doi:10.1002/ijc.23977

    Article  CAS  Google Scholar 

  • Vandernoot I, Sartelet H, Abu-Khudir R, Chanoine JP, Deladoey J (2012) Evidence for calcitonin-producing cells in human lingual thyroids. J Clin Endocrinol Metab 97(3):951–956. doi:10.1210/jc.2011-2772

    Article  CAS  PubMed  Google Scholar 

  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11(5):329–341. doi:10.1038/nrm2882

    Article  CAS  PubMed  Google Scholar 

  • Vitagliano D, De Falco V, Tamburrino A, Coluzzi S, Troncone G, Chiappetta G, Ciardiello F, Tortora G, Fagin JA, Ryan AJ, Carlomagno F, Santoro M (2011) The tyrosine kinase inhibitor ZD6474 blocks proliferation of RET mutant medullary thyroid carcinoma cells. Endocr Relat Cancer 18(1):1–11. doi:10.1677/ERC-09-0292

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Goodman DG, Squire RA, Chu KC, Linhart MS (1979) Neoplastic and nonneoplastic lesions in aging (C57BL/6N x C3H/HeN)F1 (B6C3F1) mice. J Natl Cancer Inst 63(3):849–854

    CAS  PubMed  Google Scholar 

  • Wells SA Jr, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, Baudin E, Elisei R, Jarzab B, Vasselli JR, Read J, Langmuir P, Ryan AJ, Schlumberger MJ (2012) Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol: Official J Am Soc Clin Oncol 30(2):134–141. doi:10.1200/JCO.2011.35.5040

    Article  CAS  Google Scholar 

  • Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118(Pt 5):843–846. doi:10.1242/jcs.01660

    Article  CAS  PubMed  Google Scholar 

  • Westerlund J, Andersson L, Carlsson T, Fagman H, Nilsson M (2013) Misguided migration of C cell precursors to extra-thyroidal locations related to defective pharyngeal pouch development in Shh deficient mice. Cell Dev Biol 2:129

    Article  CAS  Google Scholar 

  • Williams ED (1966) Histogenesis of medullary carcinoma of the thyroid. J Clin Pathol 19(2):114–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams BO, Remington L, Albert DM, Mukai S, Bronson RT, Jacks T (1994) Cooperative tumorigenic effects of germline mutations in Rb and p53. Nat Genet 7(4):480–484. doi:10.1038/ng0894-480

    Article  CAS  PubMed  Google Scholar 

  • Wolfe HJ, Voelkel EF, Tashjian AH Jr (1974) Distribution of calcitonin-containing cells in the normal adult human thyroid gland: a correlation of morphology with peptide content. J Clin Endocrinol Metab 38(4):688–694. doi:10.1210/jcem-38-4-688

    Article  CAS  PubMed  Google Scholar 

  • Woodhouse NJ, Gudmundsson TV, Galante L, Nadarajah A, Buckle RM, Joplin GF, MacIntyre I (1969) Biochemical studies on four patients with medullary carcinoma of the thyroid. J Endocrinol 45(1):Suppl:xvi

    Google Scholar 

  • Wu X, Schmidt JA, Avarbock MR, Tobias JW, Carlson CA, Kolon TF, Ginsberg JP, Brinster RL (2009) Prepubertal human spermatogonia and mouse gonocytes share conserved gene expression of germline stem cell regulatory molecules. Proc Natl Acad Sci USA 106(51):21672–21677. doi:10.1073/pnas.0912432106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu PX, Zheng W, Laclef C, Maire P, Maas RL, Peters H, Xu X (2002) Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 129(13):3033–3044

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamasaki L, Bronson R, Williams BO, Dyson NJ, Harlow E, Jacks T (1998) Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/−)mice. Nat Genet 18(4):360–364. doi:10.1038/ng0498-360

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Lu X, Yuan L (2014) LncRNA: a link between RNA and cancer. Biochim Biophys Acta 1839(11):1097–1109. doi:10.1016/j.bbagrm.2014.08.012

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Santarpia L, Cote GJ, El-Naggar AK, Gagel RF (2008) High resolution array-comparative genomic hybridization profiling reveals deoxyribonucleic acid copy number alterations associated with medullary thyroid carcinoma. J Clin Endocrinol Metab 93(11):4367–4372. doi:10.1210/jc.2008-0912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin L, Puliti A, Bonora E, Evangelisti C, Conti V, Tong WM, Medard JJ, Lavoue MF, Forey N, Wang LC, Manie S, Morel G, Raccurt M, Wang ZQ, Romeo G (2007) C620R mutation of the murine ret proto-oncogene: loss of function effect in homozygotes and possible gain of function effect in heterozygotes. Int J Cancer (Journal international du cancer) 121(2):292–300. doi:10.1002/ijc.22378

    Article  CAS  Google Scholar 

  • Young BA, Leblond CP (1963) The light cell as compared to the follicular cell in the thyroid gland of the rat. Endocrinology 73:669–686. doi:10.1210/endo-73-6-669

    Article  CAS  PubMed  Google Scholar 

  • Zeytinoglu FN, DeLellis RA, Gagel RF, Wolfe HJ, Tashjian AH Jr (1980) Establishment of a calcitonin-producing rat medullary thyroid carcinoma cell line. I. Morphological studies of the tumor and cells in culture. Endocrinology 107(2):509–515. doi:10.1210/endo-107-2-509

    Article  CAS  PubMed  Google Scholar 

  • Zeytinoglu FN, Brazeau P, Mougin C (1983) Regulation of neurotensin secretion in a mammalian C cell line: effect of dexamethasone. Regul Pept 6(2):147–154

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Zuo H, Ozaki T, Nakagomi N, Kakudo K (2006) Cancer stem cell hypothesis in thyroid cancer. Pathol Int 56(9):485–489. doi:10.1111/j.1440-1827.2006.01995.x

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Flesken-Nikitin A, Levine CG, Shmidt EN, Eng JP, Nikitina EY, Spencer DM, Nikitin AY (2005) Suppression of melanotroph carcinogenesis leads to accelerated progression of pituitary anterior lobe tumors and medullary thyroid carcinomas in Rb+/− mice. Cancer Res 65(3):787–796

    CAS  PubMed  Google Scholar 

  • Zhu W, Hai T, Ye L, Cote GJ (2010) Medullary thyroid carcinoma cell lines contain a self-renewing CD133+ population that is dependent on ret proto-oncogene activity. J Clin Endocrinol Metab 95(1):439–444. doi:10.1210/jc.2009-1485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu L, Lu Z, Zhao H (2014) Antitumor mechanisms when pRb and p53 are genetically inactivated. Oncogene. doi:10.1038/onc.2014.399

    Google Scholar 

  • Ziebold U, Lee EY, Bronson RT, Lees JA (2003) E2F3 loss has opposing effects on different pRB-deficient tumors, resulting in suppression of pituitary tumors but metastasis of medullary thyroid carcinomas. Mol Cell Biol 23(18):6542–6552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

G.J. Cote is supported by NIH/NCI grant P50 CA168505.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert J. Cote .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cote, G.J., Grubbs, E.G., Hofmann, MC. (2015). Thyroid C-Cell Biology and Oncogenic Transformation. In: Raue, F. (eds) Medullary Thyroid Carcinoma. Recent Results in Cancer Research, vol 204. Springer, Cham. https://doi.org/10.1007/978-3-319-22542-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22542-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22541-8

  • Online ISBN: 978-3-319-22542-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics