Skip to main content

Focused Ultrasound and Lithotripsy

  • Chapter
Therapeutic Ultrasound

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 880))

Abstract

Shock wave lithotripsy has generally been a first choice for kidney stone removal. The shock wave lithotripter uses an order of microsecond pulse durations and up to a 100 MPa pressure spike triggered at approximately 0.5–2 Hz to fragment kidney stones through mechanical mechanisms. One important mechanism is cavitation. We proposed an alternative type of lithotripsy method that maximizes cavitation activity to disintegrate kidney stones using high-intensity focused ultrasound (HIFU). Here we outline the method according to the previously published literature (Matsumoto et al., Dynamics of bubble cloud in focused ultrasound. Proceedings of the second international symposium on therapeutic ultrasound, pp 290–299, 2002; Ikeda et al., Ultrasound Med Biol 32:1383–1397, 2006; Yoshizawa et al., Med Biol Eng Comput 47:851–860, 2009; Koizumi et al., A control framework for the non-invasive ultrasound the ragnostic system. Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS), pp 4511–4516, 2009; Koizumi et al., IEEE Trans Robot 25:522–538, 2009). Cavitation activity is highly unpredictable; thus, a precise control system is needed. The proposed method comprises three steps of control in kidney stone treatment. The first step is control of localized high pressure fluctuation on the stone. The second step is monitoring of cavitation activity and giving feedback on the optimized ultrasound conditions. The third step is stone tracking and precise ultrasound focusing on the stone. For the high pressure control we designed a two-frequency wave (cavitation control (C-C) waveform); a high frequency ultrasound pulse (1–4 MHz) to create a cavitation cloud, and a low frequency trailing pulse (0.5 MHz) following the high frequency pulse to force the cloud into collapse. High speed photography showed cavitation collapse on a kidney stone and shock wave emission from the cloud. We also conducted in-vitro erosion tests of model and natural kidney stones. For the model stones, the erosion rate of the C-C waveform showed a distinct advantage with the combined high and low frequency waves over either wave alone. For optimization of the high frequency ultrasound intensity, we investigated the relationship between subharmonic emission from cavitation bubbles and stone erosion volume. For stone tracking we have also developed a non-invasive ultrasound theragnostic system (NIUTS) that compensates for kidney motion. Natural stones were eroded and most of the resulting fragments were less than 1 mm in diameter. The small fragments were small enough to pass through the urethra. The results demonstrate that, with the precise control of cavitation activity, focused ultrasound has the potential to be used to develop a less invasive and more controllable lithotripsy system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abolmaesumi P, Salcudean SE, Zhu WH, Sirouspour M, DiMaio S (2002) Image-guided control of a robot for medical ultrasound. IEEE Trans Robot Autom 18:11–23

    Article  Google Scholar 

  • Aoki Y, Kaneko K, Sakai T, Masuda K (2010) A study of scanning the ultrasound probe on body surface and construction of visual servo system based on echogram. J Robot Mech 22:273–279

    Google Scholar 

  • Arnold P, Preiswerk F, Fasel B, Salomir R, Scheffler K, Cattin P (2011) 3D organ motion prediction for MR-guided high intensity focused ultrasound. Med Image Comput Comput Assist Interv 14:623–630

    PubMed  Google Scholar 

  • Bailey MR (1997) Control of acoustic cavitation with application of lithotripsy. PhD dissertation, University of Texas at Austin, Austin.

    Google Scholar 

  • Bailey MR, Blackstock DT, Cleveland RO, Crum LA (1999) Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II Cavitation fields. J Acoust Soc Am 106:1149–1159

    Article  CAS  PubMed  Google Scholar 

  • Bailey MR, Couret LN, Sapozhnikov OA, Khokhlova VA, ter Haar G, Vaezy S, Shi X, Martin R, Crum LA (2001) Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro. Ultrasound Med Biol 27:695–708

    Article  CAS  PubMed  Google Scholar 

  • Bailey MR, Pishchalnikov YA, Sapozhnikov OA, Cleveland RO, McAteer JA, Miller NA, Pishchalnikova IV, Connors BA, Crum LA, Evan AP (2005) Cavitation detection during shock-wave lithotripsy. Ultrasound Med Biol 31:1245–1256

    Article  PubMed  Google Scholar 

  • Brix L, Ringgaard S, Sorensen TS, Poulsen PR (2014) Three-dimensional liver motion tracking using real-time two-dimensional MRI. Med Phys 41:042303

    Article  Google Scholar 

  • Carnel MT, Alcock RD, Emmony DC (1993) Optical imaging of shock waves produced by a high-energy electromagnetic transducer. Phys Med Biol 38:1575–1588

    Article  Google Scholar 

  • Cathignol D, Tavakkoli J, Birer A, Arefiev A (1998) Comparison between the effects of cavitation induced by two different pressure-time shock waveform pulses. IEEE Trans Ultrason Ferroelectr Freq Control 45:788–799

    Article  CAS  PubMed  Google Scholar 

  • Chahine GL, Duraiswami R (1992) Dynamical interactions in a multi-bubble cloud. J Fluids Eng 114:680–686

    Article  CAS  Google Scholar 

  • Chaussy C, Brendel W, Schiemdt E (1980) Extracorporeally induced destruction of kidney stones by shock waves. Lancet 2:1265–1268

    Article  CAS  PubMed  Google Scholar 

  • Church CC (1989) A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. J Acoust Soc Am 86:215–227

    Article  CAS  PubMed  Google Scholar 

  • Cleveland RO, Bailey MR, Fineberg N, Hartenbaum B, Lokhandwalla M, McAteer JA, Sturtevant B (2000a) Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3. Rev Sci Instrum 71:2514–2525

    Article  CAS  Google Scholar 

  • Cleveland RO, Sapozhnikov OA, Bailey MR, Crum LA (2000b) A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro. J Acoust Soc Am 107:1745–1758

    Article  CAS  PubMed  Google Scholar 

  • Coleman AJ, Saunders JE, Crum LA, Dyson M (1987) Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med Biol 13:69–76

    Article  CAS  PubMed  Google Scholar 

  • Coleman AJ, Choi MJ, Saunders JE (1996) Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy. Ultrasound Med Biol 22:1079–1087

    Article  CAS  PubMed  Google Scholar 

  • Crum LA (1988) Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. J Urol 140:1587–1590

    CAS  PubMed  Google Scholar 

  • d’Agostino L, Brennen CE (1988) Acoustical absorption and scattering cross sections of spherical bubble clouds. J Acoust Soc Am 84:2126–2134

    Article  Google Scholar 

  • d’Agostino L, Brennen CE (1989) Linearized dynamics of spherical bubble clouds. J Fluid Mech 199:155–176

    Article  Google Scholar 

  • Duryea AP, Maxwell AD, Roberts WW, Xu Z, Hall TL, Cain CC (2011) In vitro comminution of model renal calculi using histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control 58:971–980

    Article  PubMed  Google Scholar 

  • Duryea AP, Roberts WW, Cain CC, Hall TL (2013) Controlled cavitation to augment SWL stone comminution mechanistic insights in vitro. IEEE Trans Ultrason Ferroelectr Freq Control 60:301–309

    Article  PubMed Central  PubMed  Google Scholar 

  • Eisenmenger W (2001) The mechanisms of stone fragmentation in ESWL. Ultrasound Med Biol 27:683–693

    Article  CAS  PubMed  Google Scholar 

  • Eisenmenger W, Du XX, Tang C, Zhao S, Wang Y, Rong F, Dai D, Guan M, Qi A (2002) The first clinical results of “wide-focus and low pressure” ESWL. Ultrasound Med Biol 28:769–774

    Article  CAS  PubMed  Google Scholar 

  • Evan AP, Lynn R, Willis LR, McAteer JA, Bailey MR, Connors BA, Shao Y, Lingeman JE, Williams JC Jr, Fineberg NS, Crum LA (2002) Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. J Urol 168:1556–1562

    Article  PubMed  Google Scholar 

  • Gateau J, Aubry JF, Pernot M, Fink M, Tanter M (2011) Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 58:517–532

    Article  PubMed Central  PubMed  Google Scholar 

  • Ginhoux R, Gangloff J, Mathelin M, Soler L, Sanchez MMA, Marescaux J (2005) Active filtering of physiological motion in robotized surgery using predictive control. IEEE Trans Robot 21:67–79

    Article  Google Scholar 

  • Gracewski SM, Dahake G, Ding Z, Burns SJ, Everbach EC (1993) Internal stress wave measurements in solids subjected to the lithotripter pulses. J Acoust Soc Am 94:652–661

    Article  CAS  PubMed  Google Scholar 

  • Ikeda T, Yoshizawa S, Tosaki M, Allen JS, Takagi S, Ohta N, Kitamura T, Matsumoto Y (2006) Cloud cavitation control for lithotripsy using high intensity focused ultrasound. Ultrasound Med Biol 32:1383–1397

    Article  PubMed  Google Scholar 

  • Kato H, Konno A, Maeda M, Yamaguchi H (1996) Possibility of quantitative prediction of cavitation erosion without model test. J Fluids Eng 118:582–588

    Article  Google Scholar 

  • Knapp RT (1955) Recent investigation on the mechanics of cavitation and erosion damage. Trans ASME 77:1045–1054

    Google Scholar 

  • Koizumi N, Seo J, Suzuki Y, Lee D, Ota K, Nomiya A, Yoshizawa S, Yoshinaka K, Sugita N, Homma Y, Matsumoto Y, Mitsuishi M (2009a) A control framework for the non-invasive ultrasound theragnostic system. Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS), St. Louis, USA, pp 4511–4516

    Google Scholar 

  • Koizumi N, Warisawa S, Nagoshi M, Hashizume H, Mitsuishi M (2009b) Construction methodology for a remote ultrasound diagnostic system. IEEE Trans Robot 25:522–538

    Article  Google Scholar 

  • Koizumi N, Seo J, Lee D, Funamoto T, Nomiya A, Yoshinaka K, Sugita N, Homma H, Matsumoto Y, Mitsuishi M (2011) Robust kidney stone tracking for a non-Invasive ultrasound theragnostic system –servoing performance and safety enhancement. Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp 2443–2450

    Google Scholar 

  • Koizumi N, Seo J, Funamoto T, Nomiya A, Ishikawa A, Yoshinaka K, Sugita N, Homma Y, Matsumoto Y, Mitsuishi M (2013) Construction methodology for NIUTS ―Bed servoing system for body targets. J Robot Mech 25:1088–1096

    Google Scholar 

  • Koizumi N, Funamoto T, Seo J, Lee D, Tsukihara H, Nomiya A, Azuma T, Yoshinaka K, Sugita N, Homma H, Matsumoto Y, Mitsuishi M (2014) A novel robust template matching method to track and follow body targets for NIUTS. Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, pp 1929–1936

    Google Scholar 

  • Konno A, Kato H, Yamaguchi H, Maeda M (2002) On the collapsing behavior of cavitation bubble clusters. JSME Int J B 3:631–637

    Article  Google Scholar 

  • Krupa A, Fichtinger G, Hager G (2009) Real-time motion stabilization with B-mode ultrasound image speckle information and visual servoing. Int J Robot Res 28:1334–1354

    Article  Google Scholar 

  • Kubota Y, Matsumura A, Fulahori M, Minohara S, Yasuda S, Nagahashi H (2014) A new method for tracking organ motion on diagnostic ultrasound images. Med Phys 41:092901

    Article  PubMed  Google Scholar 

  • Li R, Jia X, Lewis JH, Gu X, Folkerts M, Men C, Jiang SB (2010) Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Med Phys Lett 37:2822–2826

    Google Scholar 

  • Loske AM, Prieto FE, Fernández F, van Cauwelaert J (2002) Tandem shock wave cavitation enhancement for extracororeal lithotripsy. Phys Med Biol 47:3945–3957

    Article  PubMed  Google Scholar 

  • Matsumoto Y, Yoshizawa S (2005) Behavior of bubble cluster in an ultrasound field. Int J Numer Methods Fluids 47:591–601

    Article  Google Scholar 

  • Matsumoto Y, Yoshizawa S, Ikeda T (2002) Dynamics of bubble cloud in focused ultrasound. Proceedings of the second international symposium on therapeutic ultrasound, International Society for Therapeutic Ultrasound (ISTU), Seattle, USA, pp290–299

    Google Scholar 

  • Maxwell AD, Cunitz BW, Kreider W, Sapozhnikov OA, Hsi RS, Harper JD, Bailey MR, Sorensen MD (2015) Fragmentation of urinary calculi in vitro by burst wave lithotripsy. J Urol 193(1):338–344

    Article  PubMed  Google Scholar 

  • McAteer JA, Williams JC, Cleveland RO, Van Cauwelaert J, Bailey MR, Lifshitz DA, Evan AP (2005) Ultracal-30 gypsum artificial stones for research on the mechanisms of stone breakage in shock wave lithotripsy. Urol Res 33:429–434

    Article  PubMed  Google Scholar 

  • Mørch KA (1981) Cavity cluster dynamics and cavitation erosion. Proceedings of ASME Cavitation polyphase flow forum, ASME, Boulder, Colorado, pp 1–10

    Google Scholar 

  • Mura M, Ciuti G, Ferrari V, Dario P, Menciassi A (2014) Ultrasound-based tracking strategy for endoluminal devices in cardiovascular surgery. Int J Med Robot, doi: 10.1002/rcs.1603. [Epub ahead of print]

    Google Scholar 

  • Nakamura Y, Kishi K, Kawakami H (2001) Heartbeat synchronization for robotic cardiac surgery. IEEE Int Conf Robot Autom (ICRA) 2:2014–2019

    Google Scholar 

  • Omta R (1987) Oscillations of a cloud of bubbles of small and not so small amplitude. J Acoust Soc Am 82:1018–1033

    Article  Google Scholar 

  • Ozhasoglu C, Saw CB, Chen H, Burton S, Komanduri K, Yue NJ, Huq SM, Heron DE (2008) Synchrony – cyberknife respiratory compensation technology. Med Dosim 33:117–123

    Article  PubMed  Google Scholar 

  • Philip A, Delius M, Scheffczyk C, Vogel A, Lauterborn W (1993) Interaction of lithotripter-generated shock waves with air bubbles. J Acoust Soc Am 93:2496–2509

    Article  Google Scholar 

  • Pishchalnikov YA, Sapozhnikov OA, Bailey MR, Williams JC Jr, Cleveland RO, Colonius T, Crum LA, Evan AP, McAteer JA (2003) Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. J Endourol 17:435–446

    Article  PubMed Central  PubMed  Google Scholar 

  • Reisman GE, Brennen CE (1996) Pressure pulses generated by cloud cavitation. ASME FED 236:319–328

    Google Scholar 

  • Reisman GE, Wang YC, Brennen CE (1998) Observation of shock waves in cloud cavitation. J Fluid Mech 355:255–283

    Article  Google Scholar 

  • Sapozhnikov OV, Khokhlova VA, Williams JC Jr, McAteer JA, Cleveland RO, Crum LA (2002) Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy. J Acoust Soc Am 112:1183–1195

    Article  PubMed  Google Scholar 

  • Seo J, Koizumi N, Yoshinaka K, Sugita N, Nomiya A, Homma Y, Matsumoto Y, Mitsuishi M (2010) Three-dimensional computer controlled acoustic pressure scanning and quantification of focused ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 57:883–891

    Article  PubMed  Google Scholar 

  • Seo J, Koizumi N, Funamoto T, Sugita N, Yoshinaka K, Nomiya A, Ishikawa A, Homma Y, Matsumoto Y, Mitsuishi M (2011) Visual servoing for a US-guided therapeutic HIFU system by coagulated lesion tracking: a phantom study. Int J Med Robot Comput Assist Surg 7:237–247

    Article  Google Scholar 

  • Shimada M, Matsumoto Y, Kobayashi T (2000) Influence of the nuclei size distribution on the collapsing behavior of the cloud cavitation. JSME Int J B 43:380–385

    Article  Google Scholar 

  • Sokolov DL, Bailey MR, Crum LA (2001) Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. J Acoust Soc Am 110:1685–1695

    Article  CAS  PubMed  Google Scholar 

  • Sokolov DL, Bailey MR, Crum LA (2003) Dual-pulse lithotripter accelerates stone fragmentation and reduces cell lysis in vitro. Ultrasound Med Biol 29:1045–1052

    Article  PubMed  Google Scholar 

  • Soyama H, Kato H, Oba R (1992) Cavitation observations of severely erosive vortex cavitation arising in a centrifugal pump. Proceedings of third IMechE International Conference on Cavitation, IMechE, London, UK, pp 103–110

    Google Scholar 

  • ter Haar G (2001) Acoustic surgery. Phys Today, 54(12), pp. 29–34

    Google Scholar 

  • Thienphrapa P, Ramachandran B, Elhawary H, Popovic A, Taylor RH (2014) Guidance of a high dexterity robot under 3d ultrasound for minimally invasive retrieval of foreign bodies from a beating heart. IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, pp 4869–4874

    Google Scholar 

  • To G, Mahfouz MR (2013) Quaternionic attitude estimation for robotic and human motion tracking using sequential Monte Carlo methods with von Mises-Fisher and nonuniform densities simulations. IEEE Trans Biomed Eng 60:3046–3059

    Article  PubMed  Google Scholar 

  • Tuna E, Franke T, Bebek O, Shiose A, Fukamachi K, Cavusoglu M (2013) Heart motion prediction based on adaptive estimation algorithms for robotic-assisted beating heart surgery. IEEE Trans Robot 29:261–276

    Article  PubMed Central  PubMed  Google Scholar 

  • van Wijngaarden L (1964) On the collective collapse of a large number of gas bubbles in water. Proceedings of 11th International Conference on Applied Mechanics, SpringerVerlag, Berlin, Germany, pp 854–861

    Google Scholar 

  • Wang YC, Brennen CE (1995) The noise generated by the collapse of a cloud of cavitation bubbles. ASME FED 226. In: Cavitation and gas-liquid flow in fluid machinery devices, ASME, South Carolina, USA, pp 17–29

    Google Scholar 

  • Wang YC, Brennen CE (1999) Numerical computation of shock waves in a spherical cloud of cavitation bubbles. ASME J Fluids Eng 121:872–880

    Article  Google Scholar 

  • Williams JC, Stonehill MA, Colmenares K, Evan AP, Andreoli SP, Cleveland RO, Bailey MR, Crum LA, McAteer JA (1999) Effect of macroscopic air bubbles on cell lysis by shock wave lithotripsy in vivo. Ultrasound Med Biol 25:473–479

    Article  PubMed  Google Scholar 

  • Xi X, Zhong P (2000) Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator – in vivo experiments. Ultrasound Med Biol 26:457–467

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa S, Ikeda T, Takagi S, Matsumoto Y (2004) Nonlinear ultrasound propagation in a spherical bubble cloud. Proceedings of IEEE International ultrasonics symposium 2004, Montreal, Canada, vol 2, pp 886–889

    Google Scholar 

  • Yoshizawa S, Ikeda T, Ito A, Ota R, Takagi S, Matsumoto Y (2009) High intensity focused ultrasound lithotripsy with cavitating microbubbles. Med Biol Eng Comput 47:851–860

    Article  PubMed  Google Scholar 

  • Zhong P, Chuong CJ, Goolsby RD, Preminger GM (1992) Microhardness measurements of renal calculi: regional differences and effects of microstructure. J Biomed Mater Res 26:1117–1130

    Article  CAS  PubMed  Google Scholar 

  • Zhong P, Cocks FH, Cioanta I, Preminger GM (1997) Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy. J Urol 158:2323–2328

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Cocks FH, Preminger GM, Zhong P (2002) The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med Biol 28:661–671

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichiro Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ikeda, T., Yoshizawa, S., Koizumi, N., Mitsuishi, M., Matsumoto, Y. (2016). Focused Ultrasound and Lithotripsy. In: Escoffre, JM., Bouakaz, A. (eds) Therapeutic Ultrasound. Advances in Experimental Medicine and Biology, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-319-22536-4_7

Download citation

Publish with us

Policies and ethics