Skip to main content

MR-Guided Transcranial Focused Ultrasound

  • Chapter
Therapeutic Ultrasound

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 880))

Abstract

Previous chapters introduced the ability of using focused ultrasound to ablate tissues. It has led to various clinical applications in the treatment of uterine fibroid, prostate or liver cancers. Nevertheless, treating the brain non-invasively with focused ultrasound has been considered beyond reach for almost a century: The skull bone protects the brain from mechanical injuries, but it also reflects and refracts ultrasound, making it difficult to target the brain with focused ultrasound. Fortunately, aberration correction techniques have been developed recently and thermal lesioning in the thalamus has been achieved clinically. This chapter introduces the aberration effect of the skull bone and how it can be corrected non-invasively. It also presents the latest clinical results obtained with thermal ablation and introduces novel non-thermal approaches that could revolutionize brain therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkins R, Huang Y, Pajek D, Hynynen K (2013) Cavitation-based third ventriculostomy using MRI-guided focused ultrasound: Laboratory investigation. J Neurosurg 119:1520–1529

    Article  PubMed Central  PubMed  Google Scholar 

  • Aubry JF, Tanter M, Gerber J, Thomas JL, Fink M (2001) Optimal focusing by spatio-temporal inverse filter. II experiments application to focusing through absorbing and reverberating media. J Acoust Soc Am 110:48–58

    Article  CAS  PubMed  Google Scholar 

  • Aubry JF, Tanter M, Pernot M, Thomas JL, Fink M (2003) Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am 113:84–93

    Article  CAS  PubMed  Google Scholar 

  • Baron C, Aubry JF, Tanter M, Meairs S, Fink M (2009) Simulation of intracranial acoustic fields in clinical trials of sonothrombolysis. Ultrasound Med Biol 35:1148–1158

    Article  PubMed  Google Scholar 

  • Borrelli M, Bailey K, Dunn F (1981) Early ultrasonic effects upon mammalian CNS structures (chemical synapses). J Acoust Soc Am 69:1514–1516

    Article  CAS  PubMed  Google Scholar 

  • Chang WS, Jung HH, Kweon EJ, Zadicario E, Rachmilevitch I, Chang JW (2014) Unilateral magnetic resonance guided focused ultrasound thalamotomy for essential tremor: practices and clinicoradiological outcomes. J Neurol Neurosurg Psychiatry 86(3):257

    Article  PubMed  Google Scholar 

  • Chauvet D, Marsac L, Pernot M, Boch AL, Guillevin R, Salameh N, Souris L, Darrasse L, Fink M, Tanter M, Aubry JF (2013) Targeting accuracy of transcranial magnetic resonance–guided high-intensity focused ultrasound brain therapy: a fresh cadaver model. J Neurosurg 118:1046–1052

    Article  PubMed  Google Scholar 

  • Chen PY, Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, Lyu LA, Tseng IC, Feng LY, Tsai HC, Chen SM, Lu YJ, Wang JJ, Yen TC, Ma YH, Wu T, Chen JP, Chuang JI, Shin JW, Hsueh C, Wei KC (2010) Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment. Neuro Oncol 12:1050–1060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi JJ, Pernot M, Small SA, Konofagou EE (2007) Noninvasive, transcranial and localized opening of the blood–brain barrier using focused ultrasound in mice. Ultrasound Med Biol 33:95–104

    Article  PubMed  Google Scholar 

  • Clark JM, White DN, Curry GR, Stevenson RJ, Campbell JK, Jenkins CO (1971) The measurement of intracranial echo pulsations. Med Biol Eng 9:263–287

    Article  CAS  PubMed  Google Scholar 

  • Clement G, Hynynen K (2002a) A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol 47:1219–1236

    Article  CAS  PubMed  Google Scholar 

  • Clement GT, Hynynen K (2002b) Micro-receiver guided transcranial beam steering. IEEE Trans Ultrason Ferroelect Freq Control 49:447–453

    Article  Google Scholar 

  • Clement GT, Sun J, Giesecke T, Hynynen K (2000) A hemisphere array for non-invasive ultrasound brain therapy and surgery. Phys Med Biol 45:3707–3719

    Article  CAS  PubMed  Google Scholar 

  • Daffertshofer M, Gass A, Ringleb P, Sitzer M, Sliwka U, Els T, Sedlaczek O, Koroshetz WJ, Hennerici MG (2005) Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator: results of a phase II clinical trial. Stroke 36:1441–1446

    Article  PubMed  Google Scholar 

  • Deffieux T, Younan Y, Wattiez N, Tanter M, Pouget P, Aubry JF (2013) Low-intensity focused ultrasound modulates monkey visuomotor behavior. Curr Biol 23:2430–2433

    Article  CAS  PubMed  Google Scholar 

  • Elias WJ, Huss D, Voss T, Loomba J, Khaled M, Zadicario E, Frysinger RC, Sperling SA, Wylie S, Monteith SJ, Druzgal J, Shah BB, Harrison M, Wintermark M (2013a) A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med 369:640–648

    Article  CAS  PubMed  Google Scholar 

  • Elias WJ, Khaled M, Hilliard JD, Aubry JF, Frysinger RC, Sheehan JP, Wintermark M, Lopes MB (2013b) A magnetic resonance imaging, histological, and dose modeling comparison of focused ultrasound, radiofrequency, and Gamma Knife radiosurgery lesions in swine thalamus. J Neurosurg 119:307–317

    Article  PubMed  Google Scholar 

  • Fry FJ, Barger JE (1978) Acoustical properties of the human skull. J Acoust Soc Am 63:1576–1590

    Article  CAS  PubMed  Google Scholar 

  • Fry FJ, Ades HW, Fry WJ (1958) Production of reversible changes in the central nervous system by ultrasound. Science 127:83–84

    Article  CAS  PubMed  Google Scholar 

  • Fry FJ, Sanghvi NT, Foster RS, Bihrle R, Hennige C (1995) Ultrasound and microbubbles: their generation, detection and potential utilization in tissue and organ therapy—experimental. Ultrasound Med Biol 21:1227–1237

    Article  CAS  PubMed  Google Scholar 

  • Gateau J, Marsac L, Pernot M, Aubry JF, Tanter M, Fink M (2010) Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature. IEEE Trans Biomed Eng 57:134–144

    Article  PubMed Central  PubMed  Google Scholar 

  • Gateau J, Aubry JF, Pernot M, Fink M, Tanter M (2011a) Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 58:517–532

    Article  PubMed Central  PubMed  Google Scholar 

  • Gateau J, Aubry JF, Chauvet D, Boch A, Fink M, Tanter M (2011b) In vivo bubble nucleation probability in sheep brain tissue. Phys Med Biol 56:7001

    Article  CAS  PubMed  Google Scholar 

  • Gavrilov L, Gersuni G, Ilyinsky O, Sirotyuk M, Tsirulnikov E, Shchekanov E (1976) The effect of focused ultrasound on the skin and deep nerve structures of man and animal. Prog Brain Res 43:279–292

    Article  CAS  PubMed  Google Scholar 

  • Gyongy M, Coussios CC (2009) Passive spatial mapping of inertial cavitation during HIFU exposure. IEEE Trans Biomed Eng 57:48–56

    Article  PubMed  Google Scholar 

  • Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406:147–150

    Article  CAS  PubMed  Google Scholar 

  • Herbert E, Pernot M, Montaldo G, Fink M, Tanter M (2009) Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields. IEEE Trans Ultrason Ferroelectr Freq Control 56:2388–2399

    Article  PubMed Central  PubMed  Google Scholar 

  • Hertzberg Y, Volovick A, Zur Y, Medan Y, Vitek S, Navon G (2010) Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy. Med Phys 37:2934–2942

    Article  CAS  PubMed  Google Scholar 

  • Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits. Radiology 220:640–646

    Article  CAS  PubMed  Google Scholar 

  • Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N (2005) Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 24:12–20

    Article  PubMed  Google Scholar 

  • Jeanmonod D, Magnin M, Morel A, Siegemund M (2001) Surgical control of the human thalamocortical dysrhythmia: I. Central lateral thalamotomy in neurogenic pain. Thalamus Relat Syst 1:71–79

    Google Scholar 

  • Jeanmonod D, Werner B, Morel A, Michels L, Zadicario E, Schiff G, Martin E (2012) Transcranial magnetic resonance inaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg Focus 32:1–11

    Article  Google Scholar 

  • Jenkins CO, White DN (1972) The rise time of intracranial echo pulsations and intracranial pressure. Acta Neurol Scand 48:115–123

    Article  CAS  PubMed  Google Scholar 

  • Jordao JF, Ayala-Grosso CA, Markham K, Huang Y, Chopra R, McLaurin J, Hynynen K, Aubert I (2010) Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer’s disease. PLoS One 5, e10549

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaye EA, Chen J, Pauly KB (2011) Rapid MR‐ARFI method for focal spot localization during focused ultrasound therapy. Mag Reson Med 65:738–743

    Article  Google Scholar 

  • Kieran K, Hall TL, Parsons JE, Wolf JS, Fowlkes JB, Cain CA, Roberts WW (2007) Refining histotripsy: defining the parameter space for the creation of nonthermal lesions with high intensity, pulsed focused ultrasound of the in vitro kidney. J Urol 178:672–676

    Article  PubMed  Google Scholar 

  • King RL, Brown JR, Newsome WT, Pauly KB (2013) Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol 39:312–331

    Article  PubMed  Google Scholar 

  • Krasovitski B, Frenkel V, Shoham S, Kimmel E (2011) Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci U S A 108:3258–3263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larrat B, Pernot M, Montaldo G, Fink M, Tanter M (2010) MR-guided adaptive focusing of ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 57:1734–1747

    Article  PubMed Central  PubMed  Google Scholar 

  • Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ (2014) Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci 17:322–329

    Article  CAS  PubMed  Google Scholar 

  • Leighton T (1994) The acoustic bubble. Academic, London

    Google Scholar 

  • Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M, Hynynen K, Lozano AM (2013) MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol 12:462–468

    Article  PubMed  Google Scholar 

  • Liu HL, Hua MY, Chen PY, Chu PC, Pan CH, Yang HW, Huang CY, Wang JJ, Yen TC, Wei KC (2010) Blood–brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255:415–425

    Article  PubMed  Google Scholar 

  • Marquet F, Pernot M, Aubry JF, Montaldo G, Tanter M, Fink M (2006) Non-invasive transcranial ultrasound therapy guided by CT-scans. Conf Proc IEEE Eng Med Biol Soc 1:683–687

    Article  PubMed  Google Scholar 

  • Marquet F, Boch AL, Pernot M, Montaldo G, Seilhean D, Fink M, Tanter M, Aubry JF (2013) Non-invasive ultrasonic surgery of the brain in non-human primates. J Acoust Soc Am 134:1632–1639

    Article  PubMed  Google Scholar 

  • Marsac L, Chauvet D, Larrat B, Pernot M, Robert B, Fink M, Boch AL, Aubry JF, Tanter M (2012) MR-guided adaptive focusing of therapeutic ultrasound beams in the human head. Med Phys 39:1141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B (2009) High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol 66:858–861

    Article  PubMed  Google Scholar 

  • Marty B, Larrat B, Van Landeghern M, Robic C, Robert P, Port M, Le Bihan D, Pernot M, Tanter M, Lethimonnier F, Meriaux S (2012) Dynamic study of blood–brain barrier closure after its disruption using ultrasound: a quantitative analysis. J Cereb Blood Flow Metab 32:1948–1958

    Article  PubMed Central  PubMed  Google Scholar 

  • Monteith S, Sheehan J, Medel R, Wintermark M, Eames M, Snell J, Kassell NF, Elias WJ (2013a) Potential intracranial applications of magnetic resonance–guided focused ultrasound surgery: a review. J Neurosurg 118:215–221

    Article  PubMed  Google Scholar 

  • Monteith SJ, Harnof S, Medel R, Popp B, Wintermark M, Lopes MBS, Kassell NF, Elias WJ, Snell J, Eames M (2013b) Minimally invasive treatment of intracerebral hemorrhage with magnetic resonance–guided focused ultrasound: laboratory investigation. J Neurosurg 118:1035–1045

    Article  PubMed  Google Scholar 

  • Moser D, Zadicario E, Schiff G, Jeanmonod D (2012) Measurement of targeting accuracy in focused ultrasound functional neurosurgery: technical note. Neurosurg Focus 32, E2

    Article  PubMed  Google Scholar 

  • Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1:206–223

    Article  PubMed  Google Scholar 

  • O’Reilly MA, Hynynen K (2012) Blood–brain barrier: real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller. Radiology 263:96–106

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Reilly MA, Waspe AC, Ganguly M, Hynynen K (2011) Focused-ultrasound disruption of the blood–brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate. Ultrasound Med Biol 37:587–594

    Article  PubMed Central  PubMed  Google Scholar 

  • Pernot M, Aubry JF, Tanter M, Thomas J, Fink M (2003) High power transcranial beam steering for ultrasonic brain therapy. Phys Med Biol 48:2577–2589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pernot M, Aubry JF, Tanter M, Boch AL, Kujas M and Fink M (2004) Ultrasonic transcranial brain therapy: First in vivo clinical investigation on 22 sheep using adaptive focusing. 2004 IEEE Ultrasonics Symposium, Vol 1–3. M. P. Yuhas, pp 1013–1016

    Google Scholar 

  • Pernot M, Aubry JF, Tanter M, Boch AL, Marquet F, Kujas M, Seilhean D, Fink M (2007) In vivo transcranial brain surgery with an ultrasonic time reversal mirror. J Neurosurg 106:1061–1066

    Article  PubMed  Google Scholar 

  • Phillips DJ, Smith SW, von Ramm OT and Thurstone FL (1975) Sampled aperture techniques applied to B-Mode echoencephalography. Acoustical Holography. N. Booth, Springer US, pp 103–120

    Google Scholar 

  • Pinton GF, Aubry JF, Fink M and Tanter M (2010) Numerical prediction of frequency dependent 3D maps of mechanical index thresholds in ultrasonic brain therapy. Ultrasonics Symposium (IUS), 2010 IEEE

    Google Scholar 

  • Pinton G, Aubry JF, Bossy E, Muller M, Pernot M, Tanter M (2012a) Attenuation, scattering, and absorption of ultrasound in the skull bone. Med Phys 39:299–307

    Article  PubMed  Google Scholar 

  • Pinton G, Aubry JF, Fink M, Tanter M (2012b) Numerical prediction of frequency dependent 3D maps of mechanical index thresholds in ultrasonic brain therapy. Med Phys 39:455–467

    Article  PubMed  Google Scholar 

  • Plaksin M, Shoham S, Kimmel E (2014) Intramembrane cavitation as a predictive Bio-piezoelectric mechanism for ultrasonic brain stimulation. Phys Rev X 4:011004

    Google Scholar 

  • Pulkkinen A, Huang Y, Song J, Hynynen K (2011) Simulations and measurements of transcranial low-frequency ultrasound therapy: skull-base heating and effective area of treatment. Phys Med Biol 56:4661

    Article  PubMed  Google Scholar 

  • Raymond SB, Treat LH, Dewey JD, McDannold NJ, Hynynen K, Bacskai BJ (2008) Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer’s disease mouse models. PLoS One 3, e2175

    Article  PubMed Central  PubMed  Google Scholar 

  • Ressler KJ, Mayberg HS (2007) Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nature Neuroscience 10:1116–1124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sheikov N, McDannold N, Sharma S, Hynynen K (2008) Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34:1093–1104

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun J, Hynynen K (1998) Focusing of therapeutic ultrasound through a human skull: a numerical study. J Acoust Soc Am 104:1705–1715

    Article  CAS  PubMed  Google Scholar 

  • Szobota S, Gorostiza P, Del Bene F, Wyart C, Fortin DL, Kolstad KD, Tulyathan O, Volgraf M, Numano R, Aaron HL (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54:535–545

    Article  CAS  PubMed  Google Scholar 

  • Tanter M, Thomas JL and Fink M (1996) Focusing through skull with time reversal mirrors. Application to hyperthermia. 1996 IEEE Ultrasonics Symposium, Proceedings, Vols 1 and 2. Levy M, Schneider SC and McAvoy BR, pp 1289–1293

    Google Scholar 

  • Tanter M, Thomas JL, Fink M (1998) Focusing and steering through absorbing and aberrating layers: application to ultrasonic propagation through the skull. J Acoust Soc Am 103:2403–2410

    Article  CAS  PubMed  Google Scholar 

  • Tanter M, Thomas JL, Fink M (2000) Time reversal and the inverse filter. J Acoust Soc Am 108:223–234

    Article  CAS  PubMed  Google Scholar 

  • Tanter M, Aubry JF, Gerber J, Thomas JL, Fink M (2001) Optimal focusing by spatio-temporal inverse filter I. Basic principles. J Acoust Soc Am 110:37–47

    Article  CAS  PubMed  Google Scholar 

  • Tanter M, Pernot M, Aubry JF, Montaldo G, Marquet F, Fink M (2007) Compensating for bone interfaces and respiratory motion in high-intensity focused ultrasound. Int J Hyperthermia 23:141–151

    Article  CAS  PubMed  Google Scholar 

  • Tasker RR (1998) Deep brain stimulation is preferable to thalamotomy for tremor suppression. Surg Neurol 49:145–153; discussion 153–144

    Article  CAS  PubMed  Google Scholar 

  • Thomas JL, Fink MA (1996) Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Trans Ultrason Ferroelectr Freq Contr 43:1122–1129

    Article  Google Scholar 

  • Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121:901–907

    Article  CAS  PubMed  Google Scholar 

  • Tufail Y, Matyushov A, Baldwin N, Tauchmann ML, Georges J, Yoshihiro A, Sih T, Tyler WJ (2010) Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 66:681–694

    Article  CAS  PubMed  Google Scholar 

  • Tyler WJ, Tufail Y, Finsterwald M, Tauchmann ML, Olson EJ, Majestic C (2008) Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One 3, e3511

    Article  PubMed Central  PubMed  Google Scholar 

  • Vignon F, Aubry JF, Tanter M, Margourn A, Fink M (2006) Adaptive focusing for transcranial ultrasound imaging using dual arrays. J Acoust Soc Am 120:2737–2745

    Article  CAS  PubMed  Google Scholar 

  • Vlachos F, Tung YS, Konofagou EE (2010) Permeability assessment of the focused ultrasound-induced blood–brain barrier opening using dynamic contrast-enhanced MRI. Phys Med Biol 55:5451–5466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vlachos F, Tung YS, Konofagou E (2011) Permeability dependence study of the focused ultrasound-induced blood–brain barrier opening at distinct pressures and microbubble diameters using DCE-MRI. Mag Reson Med 66:821–830

    Article  Google Scholar 

  • White DN, Hanna LF (1974) Automatic midline echoencephalography. Examination of 3,333 consecutive cases with the automatic midline computer. Neurology 24:80–93

    Article  CAS  PubMed  Google Scholar 

  • White DN, Clark JM, Chesebrough JN, White MN, Campbell JK (1968) Effect of the skull in degrading the display of echoencephalographic B and C scans. J Acoust Soc Am 44:1339–1345

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Owens G, Gordon D, Cain C, Ludomirsky A (2010) Noninvasive creation of an atrial septal defect by histotripsy in a canine model. Circulation 121:742–749

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu Z, Carlson C, Beckelman B, Snell J, Eames M, Hanael A, Lopes B, Raghavan P, Lee CC, Yen CP, Schlesinger D, Aubry JF, Sheehan J (2014) Intracranial inertial cavitation threshold and thermal ablation lesion creation using magnetic resonance imaging-guided 220 kHz focused ultrasound surgery. J Neurosurg 7:1–10

    Article  CAS  Google Scholar 

  • Yang PS, Kim H, Lee W, Bohlke M, Park S, Maher TJ, Yoo SS (2012) Transcranial focused ultrasound to the thalamus is associated with reduced extracellular GABA levels in rats. Neuropsychobiology 65:153–160

    Article  CAS  PubMed  Google Scholar 

  • Yoo SS, Bystritsky A, Lee JH, Zhang Y, Fischer K, Min BK, McDannold NJ, Pascual-Leone A, Jolesz FA (2011) Focused ultrasound modulates region-specific brain activity. Neuroimage 56:1267–1275

    Article  PubMed Central  PubMed  Google Scholar 

  • Younan Y, Deffieux T, Larrat B, Fink M, Tanter M, Aubry JF (2013) Influence of the pressure field distribution in transcranial ultrasonic neurostimulation. Med Phys 40:082902

    Article  PubMed  Google Scholar 

  • Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8:577–581

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Ding T, Wan M, Jiang H, Yang X, Zhong H, Wang S (2011) Minimizing the thermal losses from perfusion during focused ultrasound exposures with flowing microbubbles. J Acoust Soc Am 129:2336–2344

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-François Aubry or Mickael Tanter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aubry, JF., Tanter, M. (2016). MR-Guided Transcranial Focused Ultrasound. In: Escoffre, JM., Bouakaz, A. (eds) Therapeutic Ultrasound. Advances in Experimental Medicine and Biology, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-319-22536-4_6

Download citation

Publish with us

Policies and ethics