Skip to main content

Microbubble-Assisted Ultrasound for Drug Delivery in the Brain and Central Nervous System

  • Chapter
Therapeutic Ultrasound

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 880))

Abstract

The blood-brain barrier is a serious impediment to the delivery of pharmaceutical treatments for brain diseases, including cancer, neurodegenerative and neuropsychatric diseases. Focused ultrasound, when combined with microbubbles, has emerged as an effective method to transiently and locally open the blood-brain barrier to promote drug delivery to the brain. Focused ultrasound has been used to successfully deliver a wide variety of therapeutic agents to pre-clinical disease models. The requirement for clinical translation of focused ultrasound technology is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NK, Patabendige AA, Doman DE, Yusof SR, Begley DG (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  • Alkins R, Burgess A, Ganguly M, Francia G, Kerbel R, Wels WS, Hynynen K (2013) Focused ultrasound delivers targeted immune cells to metastatic brain tumors. Cancer Res 73:1892–1899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alonso A, Reinz E, Fatar M, Hennerici MG, Meairs S (2011) Clearance of albumin following ultrasound-induced blood-brain barrier opening is mediated by glial but not neuronal cells. Brain Res 1411:9–16

    CAS  PubMed  Google Scholar 

  • Alonso A, Reinz E, Leuchs B, Kleinschmidt J, Fatar M, Geers B, Lentacker I, Hennerici MG, de Smedt SC, Meairs S (2013) Focal delivery of AAV2/1-transgene into the rat brain by localized ultrasound induced BBB opening. Mol Ther Nucleic Acids 2:e73

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561

    Article  CAS  PubMed  Google Scholar 

  • Arvanitis CD, Livingstone MS, Vykhodtseva N, McDannold N (2012) Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring. PLoS One 7:e45783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aryal M, Vykhodtseva N, Zhang YZ, Park J, McDannold N (2013) Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood-tumor and blood-brain barriers improve outcomes in a rat glioma model. J Control Release 169:103–111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bakay L, Ballantine HT Jr, Hueter TF, Sosa D (1956) Ultrasonically produced changes in the blood-brain barrier. AMA Arch Neurol Psychiatry 76:457

    Article  CAS  PubMed  Google Scholar 

  • Baseri B, Choi JJ, Deffieux T, Samiotaki G, Tung YS, Olumolade O, Small SA, Morrison B III, Konofagou EE (2012) Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood-brain barrier using focused ultrasound and microbubbles. Phys Med Biol 57:65–81

    Article  Google Scholar 

  • Bing KF, Howles GP, Qi Y, Palmeri ML, Nightingale KR (2009) Blood-brain barrier (BBB) disruption using a diagnostic ultrasound scanner and definity in mice. Ultrasound Med Biol 35:1298–1308

    Article  PubMed Central  PubMed  Google Scholar 

  • Burgess A, Ayala-Grosso CA, Ganguly M, Jordão JF, Aubert I, Hynynen K (2011) Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier. PLoS One 6:e27877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burgess A, Huang Y, Querbes W, Sah DW, Hynynen K (2012) Focused ultrasound for targeted delivery of siRNA and efficient knockdown of Htt expression. J Control Release 163:125–129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burgess A, Dubey S, Yeung S, Hough O, Eterman N, Aubert I, Hynynen K (2014) Alzheimer disease in a mouse model: MR imaging-guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior. Radiology 273:736–745

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen H, Konofagou EE (2014) The size of blood-brain barrier opening induced by focused ultrasound is dictated by acoustic pressure. J Cereb Blood Flow Metab 34:1197–1204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen PY, Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, Lyu LA, Tseng IC, Feng LY, Tsai HC, Chen SM, Lu YJ, Wang JJ, Yen TC, Ma YH, Wu T, Chen JP, Chuang JI, Shin JW, Hseuh C, Wei KC (2010) Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment. Neuro Oncol 12:1050–1060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen H, Kreider W, Brayman AA, Bailey MR, Matula TJ (2011) Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys Rev Lett 106:034301

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cho CW, Liu W, Cobb N, Henthorn TK, Lillehei K, Christians U (2002) Ultrasound induced mild hyperthermia as a novel approach to increase drug uptake in brain microvessel endothelial cells. Pharm Res 19:1123–1129

    Article  CAS  PubMed  Google Scholar 

  • Cho EE, Drazic J, Ganguly M, Stefanovic B, Hynynen K (2011) Two-photon fluorescence microscopy study of cerebrovascular dynamics in ultrasound-induced blood–brain barrier opening. J Cereb Blood Flow Metab 31:1852–1862

    Article  PubMed Central  PubMed  Google Scholar 

  • Choi JJ, Pernot M, Small SA, Konofagou EE (2007) Noninvasive transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound Med Biol 33:95–104

    Article  PubMed  Google Scholar 

  • Choi JJ, Wang S, Brown TR, Small SA, Duff KE, Konofagou EE (2008) Noninvasive and transient blood-brain barrier opening in the hippocampus of Alzheimer’s double transgenic mice using focused ultrasound. Ultrason Imaging 30:189–200

    Article  PubMed Central  PubMed  Google Scholar 

  • Choi JJ, Feshitan JA, Baseri B, Wang S, Tung YS, Borden MA, Konofagou EE (2010) Microbubble-size dependence of focused ultrasound-induced blood-brain barrier opening in mice in vivo. IEEE Trans Biomed Eng 57:145–154

    Article  PubMed Central  PubMed  Google Scholar 

  • Choi JJ, Selert K, Gao Z, Baseri B, Konofagou EE (2011) Noninvasive and localized blood-brain barrier disruption using focused ultrasound can be achieved at short pulses lengths and low repetition frequencies. J Cereb Blood Flow Metab 31:725–737

    Article  PubMed Central  PubMed  Google Scholar 

  • Clement GT, Sun J, Hynynen K (2001) The role of internal reflection in transskull phase distortion. Ultrasonics 39:109–113

    Article  CAS  PubMed  Google Scholar 

  • Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deng CX, Sieling F, Pan H, Cui J (2004) Ultrasound-induced cell membrane porosity. Ultrasound Med Biol 30:519–526

    Article  PubMed  Google Scholar 

  • Deng J, Huang Q, Wang F, Liu Y, Wang Z, Wang Z, Zhang Q, Lei B, Cheng Y (2012) The role of caveolin-1 in blood-brain barrier disruption induced by focused ultrasound combined with microbubbles. J Mol Neurosci 46:677–687

    Article  CAS  PubMed  Google Scholar 

  • Diaz RJ, McVeigh PZ, O’Reilly MA, Burrell K, Bebenek M, Smith C, Etame AB, Zadeh G, Hynynen K, Wilson BC, Rutka JT (2014) Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier potential for targeting experimental brain tumours. Nanomedicine 10:1075–1087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Etame AB, Diaz RJ, O’Reilly MA, Smith CA, Mainprize TG, Hynynen K, Rutka JT (2012) Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound. Nanomedicine 8:1133–1142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan CH, Ting CY, Lin HJ, Wang CH, Liu HL, Yen TC, Yeh CK (2013a) SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials 34:3706–3715

    Article  CAS  PubMed  Google Scholar 

  • Fan CH, Ting CY, Liu HL, Huang CY, Hsieh HY, Yen TC, Wei KC, Yeh CK (2013b) Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment. Biomaterials 34:2142–2155

    Article  CAS  PubMed  Google Scholar 

  • Fenstermacher J, Gross P, Sposito N, Acuff V, Pettersen S, Gruber K (1988) Structural and functional variations in capillary systems within the brain. Ann N Y Acad Sci 529:21–30

    Article  CAS  PubMed  Google Scholar 

  • Fry WJ, Fry FJ (1960) Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron 7:166–181

    Article  PubMed  Google Scholar 

  • Goertz DE, Wright C, Hynynen K (2010) Contrast agent kinetics in the rabbit brain during exposure to therapeutic ultrasound. Ultrasound Med Biol 36:916–924

    Article  PubMed Central  PubMed  Google Scholar 

  • Goldmann EE (1909) Die aussere und innere Sekretion des gesunden und kranken Organismus im Lichte det ‘vitalenFarbung’. Beitraege Klinischen Chirurgie 64:192–265

    Google Scholar 

  • Gross ME, Nelson ET, Mone MC, Hansen HJ, Sklow B, Glasgow RE, Scaife CL (2011) A comparison of postoperative outcomes utilizing a continuous preperitoneal infusion versus epidural for midline laparotomy. Am J Surg 202:765–770

    Article  PubMed  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    Article  CAS  PubMed  Google Scholar 

  • Hosseinkhah N, Hynynen K (2012) A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels. Phys Med Biol 57:785–808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hsu PH, Wei KC, Huang CY, Wen CJ, Yen TC, Liu CL, Lin YT, Chen JC, Shen CR, Liu HL (2013) Noninvasive and targeted gene delivery into the brain using microbubble-facilitated focused ultrasound. PLoS One 8:e57682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hynynen K, Jolesz FA (1998) Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol 24:275–283

    Article  CAS  PubMed  Google Scholar 

  • Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220:640–646

    Article  CAS  PubMed  Google Scholar 

  • Hynynen K, Clement GT, McDannold N, Vykhodtseva N, King R, White PJ, Vitek S, Jolesz FA (2004) 500-element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls. Magn Reson Med 52:100–107

    Article  PubMed  Google Scholar 

  • Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vyhodtseva N (2005) Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 24:12–20

    Article  PubMed  Google Scholar 

  • Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, Sheikov N (2006) Focal disruption of the blood-brain barrier due to 260 kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg 105:445–454

    Article  CAS  PubMed  Google Scholar 

  • Jalali S, Huang Y, Dumont DJ, Hynynen K (2010) Focused ultrasound-mediated bbb disruption is associated with an increase in activation of AKT: experimental study in rats. BMC Neurol 10:114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257

    Article  CAS  PubMed  Google Scholar 

  • Jordão JF, Ayala-Grosso CA, Markham K, Huang Y, Chopra R, McLaurin J, Hynynen K, Aubert I (2010) Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer’s disease. PLoS One 5:e10549

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jordão JF, Thévenot E, Markham-Coultes K, Scarcelli T, Weng YQ, Xhima K, O’Reilly M, Huang Y, McLaurin J, Hynynen K, Aubert I (2013) Amyloid-ß plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound. Exp Neurol 248:16–29

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Killian DM, Hermeling S, Chikhale PJ (2007) Targeting the cerebrovascular large neutral amino acid transporter (LAT1) isoform using a novel disulfide-based brain drug delivery system. Drug Deliv 14:25–31

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006) Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proc Natl Acad Sci U S A 103:11719–11723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kniesel U, Wolburg H (2000) Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 20:1347–1357

    Article  Google Scholar 

  • Krizanac-Bengez L, Mayberg MR, Janigro D (2004) The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology. Neurol Res 26:846–853

    Article  CAS  PubMed  Google Scholar 

  • Lionetti V, Fittipaldi A, Agostini S, Giacca M, Recchia FA, Picano E (2009) Enhanced caveolae-mediated endocytosis by diagnostic ultrasound in vitro. Ultrasound Med Biol 35:136–143

    Article  PubMed  Google Scholar 

  • Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M, Hynynen K, Lozano AM (2013) MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol 12:462–468

    Article  PubMed  Google Scholar 

  • Liu HL, Pan CH, Ting CY, Hsiao MJ (2010a) Opening of the blood-brain barrier by low-frequency (28 kHz) ultrasound: a novel pinhole assisted mechanical scanning device. Ultrasound Med Biol 36:325–335

    Article  PubMed  Google Scholar 

  • Liu HL, Hua MY, Chen PY, Chu PC, Pan CH, Yang HW, Huang CY, Wang JJ, Yen TC, Wei KC (2010b) Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255:415–425

    Article  PubMed  Google Scholar 

  • Lochhead JJ, Thorne RG (2012) Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64:614–628

    Article  CAS  PubMed  Google Scholar 

  • Marquet F, Tung YS, Teichert T, Ferrera VP, Konofagou EE (2011) Noninvasive, transient and selective blood-brain barrier opening in non-human primates in vivo. PLoS One 6:e22598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McDannold N, Vykhodsteva N, Jolesz FA, Hynynen K (2004) MRI investigation of the threshold for thermally induced blood-brain barrier disruption and brain tissue damage in the rabbit. Magn Reson Med 51:913–923

    Article  PubMed  Google Scholar 

  • McDannold N, Vykhodtseva N, Raymond S, Jolesz F, Hynynen K (2005) MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound Med Biol 31:1527–1537

    Article  PubMed  Google Scholar 

  • McDannold N, Vykhodtseva N, Hynynen K (2006) Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity. Phys Med Biol 51:793–807

    Article  CAS  PubMed  Google Scholar 

  • McDannold N, Vykhodtseva N, Hynynen K (2007) Use of ultrasound pulses combined with definity for targeted blood-brain barrier disruption; a feasibility study. Ultrasound Med Biol 33:584–590

    Article  PubMed Central  PubMed  Google Scholar 

  • McDannold N, Vykhodtseva N, Hynynen K (2008a) Blood-brain barrier disruption by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index. Ultrasound Med Biol 34:834–840

    Article  PubMed Central  PubMed  Google Scholar 

  • McDannold N, Vykhodtseva N, Hynynen K (2008b) Effects of acoustic parameters and ultrasound. Ultrasound Med Biol 34:930–937

    Article  PubMed Central  PubMed  Google Scholar 

  • McDannold N, Clement GT, Black P, Jolesz F, Hynynen K (2010) Transcranial magnetic resonance imaging – guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. J Neurosurg 66:323–332

    Article  Google Scholar 

  • McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS (2012) Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res 72:3652–3663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mei J, Cheng Y, Song Y, Yang Y, Wang F, Liu Y, Wang Z (2009) Experimental study on targeted methotrexate delivery to the rabbit brain via magnetic resonance imaging-guided focused ultrasound. J Ultrasound Med 28:871–880

    PubMed  Google Scholar 

  • Meijering BD, Juffermans LJ, van Wamel A, Henning RH, Zuhorn IS, Emmer M, Versteilen AM, Paulus WJ, van Gilst WH, Kooiman K, de Jong N, Musters RJ, Deelman LE, Kamp O (2009) Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res 104:679–687

    Article  CAS  PubMed  Google Scholar 

  • Mesiwala AH, Farrell L, Wenzel HJ, Silbergeld DL, Crum LA, Winn HR, Mourad PD (2002) High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo. Ultrasound Med Biol 28:389–400

    Article  PubMed  Google Scholar 

  • Musch MW, Walsh-Reitz MM, Chang EB (2006) Roles of ZO-1, occludin, and actin in oxidant-induced barrier disruption. Am J Physiol Gastrointest Liver Physiol 290:222–231

    Article  CAS  Google Scholar 

  • Nhan T, Burgess A, Cho EE, Stefanovic B, Lilge L, Hynynen K (2013) Drug delivery to the brain by focused ultrasound induced blood-brain barrier disruption: quantitative evaluation of enhanced permeability of cerebral vasculature using two-photon microscopy. J Control Release 172:274–280

    Article  CAS  PubMed  Google Scholar 

  • Nyborg WL (2001) Biological effects of ultrasound: development of safety guidelines. Part II: general review. Ultrasound Med Biol 27:301–333

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly MA, Hynynen K (2012) Blood-brain barrier: real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller. Radiology 263:96–106

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Reilly MA, Hynynen K (2013) A super-resolution ultrasound method for brain vascular mapping. Med Phys 40:100701

    Article  Google Scholar 

  • O’Reilly MA, Waspe AC, Ganguly M, Hynynen K (2010) Focused ultrasound disruption of the blood-brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate. Ultrasound Med Biol 37:587–594

    Article  Google Scholar 

  • Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14

    Article  PubMed Central  PubMed  Google Scholar 

  • Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32:1959–1972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pardridge WM, Boado RJ (2012) Reengineering biopharmaceuticals for targeted delivery across the blood-brain barrier. Methods Enzymol 503:269–292

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Zhang YZ, Vykhodtseva N, McDannold N (2012) Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. J Control Release 163:277–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patrick JT, Nolting MN, Goss SA, Dines KA, Clendenon JL, Rea MA, Heimburger RF (1990) Ultrasound and the blood-brain barrier. Adv Exp Med Biol 267:369–381

    Article  CAS  PubMed  Google Scholar 

  • Pires A, Fortuna A, Alves G, Falcao A (2009) Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci 12:288–311

    CAS  PubMed  Google Scholar 

  • Rapoport SI (2001) Advances in osmotic opening of the blood-brain barrier to enhance CNS chemotherapy. Expert Opin Investig Drugs 10:1809–1818

    Article  CAS  PubMed  Google Scholar 

  • Raymond SB, Skoch J, Hynynen K, Bacskai BJ (2007) Multiphoton imaging of ultrasound/optison mediated cerebrovascular effects in vivo. J Cereb Blood Flow Metab 27:393–403.

    Google Scholar 

  • Raymond SB, Treat LH, Dewey JD, McDannold NJ, Hynynen K, Bacskai BJ (2008) Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer’s disease mouse models. PLoS One 3:e2175

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Samiotaki G, Konofagou EE (2013) Dependence of the reversibility of focused- ultrasound-induced blood-brain barrier opening on pressure and pulse length in vivo. IEEE Trans Ultrason Ferr 60:2257–2265

    Article  Google Scholar 

  • Samiotaki G, Vlachos F, Tung YS, Konofagou EE (2012) A quantitative pressure and microbubble-size dependence study of focused ultrasound induced blood-brain barrier opening reversibility in vivo using MRI. Magn Reson Med 67:769–777

    Article  PubMed Central  PubMed  Google Scholar 

  • Scarcelli T, Jordao JF, O’Reilly MA, Ellens N, Hynynen K, Aubert I (2014) Stimulation of hippocampal neurogenesis by transcranial focused ultrasound and microbubbles in adult mice. Brain Stimul 7:304–307

    Article  PubMed Central  PubMed  Google Scholar 

  • Sedlakova R, Shivers RR, Del Maestro RF (1999) Ultrastructure of the blood-brain barrier in the rabbit. J Submicrosc Cytol Pathol 31:149–161

    CAS  PubMed  Google Scholar 

  • Shealy CN, Crafts D (1965) Selective alteration of the blood-brain barrier. J Neurosurg 23:484–487

    Article  CAS  PubMed  Google Scholar 

  • Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K (2004) Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 30:979–989

    Article  PubMed  Google Scholar 

  • Sheikov N, Mcdannold NJ, Sharma S, Hynynen K (2008) Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34:1093–1104

    Article  PubMed Central  PubMed  Google Scholar 

  • Thévenot E, Jordão JF, O’Reilly MA, Markham K, Weng YQ, Foust KD, Kaspar BK, Hynynen K, Aubert I (2012) Targeted delivery of scAAV9 to the brain using MRI-guided focused ultrasound. Human Gene Ther 23:1144–1155

    Article  CAS  Google Scholar 

  • Tilling T, Engelbertz C, Decker S, Korte D, Hüwel S, Galla HJ (2002) Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cells cultures. Cell Tissue Res 310:19–29

    Article  CAS  PubMed  Google Scholar 

  • Ting CY, Fan CH, Liu HL, Huang CY, Hsieh HY, Yen TC, Wei KC, Yeh CK (2012) Concurrent blood-brain barrier opening and local drug delivery using drug carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials 33:704–712

    Article  CAS  PubMed  Google Scholar 

  • Traub O, Ishida T, Ishida M, Tupper JC, Berk BC (1999) Shear-stress-mediated extracellular signal-related kinase activation is regulated by sodium in endothelial cells. Potential role for a voltage-dependent sodium channel. J Biol Chem 274:20144–20150

    Article  CAS  PubMed  Google Scholar 

  • Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121:901–907

    Article  CAS  PubMed  Google Scholar 

  • Treat LH, McDannold N, Zhang Y, Vykhodtseva N, Hynynen K (2012) Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by mri-guided focused ultrasound in rat glioma. Ultrasound Med Biol 38:1716–1725

    Article  PubMed Central  PubMed  Google Scholar 

  • Tufail Y, Matyushov A, Baldwin N, Tauchmann ML, Georges J, Yoshihiro A, Tillery SIH, Tyler WJ (2010) Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 66:681–694

    Article  CAS  PubMed  Google Scholar 

  • Tung YS, Marquet F, Teichert T, Ferrera V, Konofagou EE (2011) Feasibility of noninvasive cavitation-guided blood-brain barrier opening using focused ultrasound and microbubbles in nonhuman primates. Appl Phys Lett 98:163704

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Wamel A, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M, de Jong N (2006) Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release 112:149–155

    Article  PubMed  CAS  Google Scholar 

  • Vlachos F, Tung YS, Konofagou EE (2011) Permeability dependence study of the focused ultrasound-induced blood-brain barrier opening at distinct pressures and microbubble diameters using DCE-MRI. Magn Reson Med 66:821–830

    Article  PubMed Central  PubMed  Google Scholar 

  • Vykhodtseva N, Hynynen K, Damianou C (1995) Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo. Ultrasound Med Biol 21:969–979

    Article  CAS  PubMed  Google Scholar 

  • Vykhodtseva N, McDannold N, Hynynen K (2008) Progress and problems in the application of focused ultrasound for blood–brain barrier disruption. Ultrasonics 48:279–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang F, Shi Y, Lu L, Liu L, Cai Y, Zheng H, Liu X, Yan F, Zou C, Sun C, Shi J, Lu S, Chen Y (2012) Targeted delivery of GDNF through the blood–brain barrier by MRI-guided focused ultrasound. PLoS One 7:e52925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Samiotaki G, Olumolade O, Feshitan JA, Konofagou EE (2014) Microbubble type and distribution dependence of focused ultrasound-induced blood-brain barrier opening. Ultrasound Med Biol 40:130–137

    Article  PubMed Central  PubMed  Google Scholar 

  • Weng JC, Wu SK, Yang FY, Tseng WY (2010) Pulse sequence and timing of contrast-enhanced MRI for assessing blood-brain barrier disruption after transcranial focused ultrasound in the presence of haemorrhage. J Magn Reson Imaging 31:1323–1330

    Article  PubMed  Google Scholar 

  • White E, Woolley M, Bienemann A, Johnson DE, Wyatt M, Murray G, Taylor H, Gill SS (2010) A robust MRI-compatible system to facilitate highly accurate stereotactic administration of therapeutic agents to targets within the brain of a large animal model. J Neurosci Methods 195:78–87

    Article  PubMed  CAS  Google Scholar 

  • Yang FY, Fu WM, Chen WS, Yeh WL, Lin WL (2008) Quantitative evaluation of the use of microbubbles with transcranial focused ultrasound on blood-brain barrier disruption. Ultrason Sonochem 15:636–643

    Article  CAS  PubMed  Google Scholar 

  • Yang FY, Lin YS, Kang KH, Chao TK (2011) Reversible blood-brain barrier disruption by repeated transcranial focused ultrasound allows enhanced extravasation. J Control Release 150:111–116

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kullervo Hynynen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burgess, A., Hynynen, K. (2016). Microbubble-Assisted Ultrasound for Drug Delivery in the Brain and Central Nervous System. In: Escoffre, JM., Bouakaz, A. (eds) Therapeutic Ultrasound. Advances in Experimental Medicine and Biology, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-319-22536-4_16

Download citation

Publish with us

Policies and ethics