Skip to main content

Abstract

Even after several economical transformations and technical advances in the synthetic fibers, cotton is still the most preferred fiber for its comfort and simplicity. Cotton has been an economic mainstay in both developed and developing countries and there is a huge demand for improved raw cotton in global textile industries due to their modernization. Besides its utility in cloth making, cotton lint is widely used in medicine, fire-extinguishing and more importantly in revealing the molecular mechanisms of cell elongation and polyploidization. Despite its importance and demand, the genetic improvement of cotton production through conventional breeding has shown slow progress due its complex genetic inheritance. To this end, recent advances in transcriptome profiling, functional genomics, proteomics and metabolomics approaches, coupled with molecular marker-assisted breeding and transgenic technology have made significant contributions in enhancing the efficiency of cotton breeding; these methods are collectively referred as molecular breeding. Efforts to link fiber quantitative trait loci, QTLs, and expression of genes involved in fiber development with molecular breeding tools provide novel targets for the development of desirable cotton fiber and economically and agronomically important traits. In this chapter, we describe progress made in these arenas, and discuss their limitations and perspectives relative to the genetic improvement of this economically-unique crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdurakhmonov IY (ed) (2014) World cotton germplasm resources. http://www.intechopen.com/books/world-cotton-germplasm-resources/cotton-germplasm-collection-of-uzbekistan. Accessed 3 Aug 2014

  • Abdurakhmonov IY, Kohel RJ, Yu JZ et al (2008) Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genome 92(6):478–487

    Article  CAS  Google Scholar 

  • Agarwal M, Neeta S, Harish P (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27(4):617–631

    Article  CAS  PubMed  Google Scholar 

  • Basra AS, Malik CP (1984) Development of the cotton fiber. Int Rev Cytol 89:65–113

    Article  CAS  Google Scholar 

  • Blenda A, Fang DD, Rami JF et al (2012) A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One 7(9):e45739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boopathi NM (2013) Genetic mapping and marker assisted selection: basics, practice and benefits. Springer, India

    Book  Google Scholar 

  • Boopathi NM, Ravikesavan R (2009) Emerging trends in enhancement of cotton fiber productivity and quality using functional genomics tools. Biotechnol Mol Biol Rev 4(1):11–28

    Google Scholar 

  • Boopathi NM, Thiyagu K, Urbi B et al (2011) Marker-assisted breeding as next-generation strategy for genetic improvement of productivity and quality: can it be realized in cotton? Int J Plant Genomics. doi:10.1155/2011/670104

  • Boopathi NM, Sathish S, Dachinamoorthy P et al (2014) Usefulness and utilization of Indian cotton germplasm. In: Abdurakhmonov IY (ed) World cotton germplasm resources. InTech, Rijeka, Croatia, p 119–136

    Google Scholar 

  • Brubaker CL, Paterson AH, Wendel JF (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203

    Article  CAS  Google Scholar 

  • Chakravarthy VS, Reddy TP, Reddy VD, Rao KV (2014) Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment. Crit Rev Biotechnol 34(2):144–160

    Article  CAS  PubMed  Google Scholar 

  • Doak CC (1934) A new technique in cotton hybridizing suggested changes in existing methods of emasculation and bagging of cotton flowers. J Hered 25:201–204

    Google Scholar 

  • Endrizjz IE, Turcoite EL, Kohel RJ (1984) Qualitative genetics, cytology, and cytogenetics in cotton. In: Kohel RJ, Lewis CF (eds) Cotton, Agron Monograph 24. ASA-CSSA-SSSA, Madison, pp 81–129

    Google Scholar 

  • Endrizzi JE, Turcotte EL, Kohel RJ (1985) Genetics, cytology, and evolution of Gossypium. Adv Genet 23:271–375

    Article  Google Scholar 

  • Fang L, Tian R, Chen J et al (2014) Transcriptomic analysis of fiber strength in upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments. PLoS One 9(4):e94642

    Article  PubMed Central  PubMed  Google Scholar 

  • Fryxell P (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2:108–165

    Google Scholar 

  • Gaspar YM, McKenna JA, McGinnin BS et al (2014) Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1. J Exp Bot 65(6):1541–1550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gillham FEM, Bell TM, Arin T et al (1995) Cotton production prospects for the next decade. The International Bank for Reconstruction and Development/The World Bank, Washington DC

    Google Scholar 

  • Gore MA, Fang DD, Poland JA et al (2014) Linkage map construction and quantitative trait locus analysis of agronomic and fiber quality traits in cotton. Plant Genome 7(1):2014

    Article  Google Scholar 

  • Gou JY, Wang LJ, Chen SP et al (2007) Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res 17:422–434

    CAS  PubMed  Google Scholar 

  • Govila OP (1969) Fertilization and seed development in crosses between G. arboreum and G. hirsutum. Indian J Gen 29:407–417

    Google Scholar 

  • Grover CE, Kim HR, Wing RA et al (2004) Incongruent patterns of local and global genome size evolution in cotton. Genome Res 14:1474–1482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gruère A (2011) ICAC Reprint from Cotton: review of the world situation, vol 64. No 5 May–June 2011

    Google Scholar 

  • Gulati AN, Turner AJ (1929) A note on early history of cotton. J Text Inst Trans 20:1–9

    Article  Google Scholar 

  • Guo W, Sun J, Zhang T (2003) Gene cloning and molecular breeding to improve fiber qualities in cotton. Chin Sci Bull 48:709–717

    Article  CAS  Google Scholar 

  • Haq MA (2009) Development of mutant varieties of crop plants at NIAB and the impact on agricultural production in Pakistan. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome

    Google Scholar 

  • Havov R, Udall JA, Hovav E et al (2008) A majority of cotton genes are expressed in single-celled fiber. Planta 227:319–329

    Article  Google Scholar 

  • He DH, Lin ZX, Zhang XL et al (2007) QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153(1–2):181–197

    CAS  Google Scholar 

  • Hendrix B, Stewart JM (2005) Estimation of the nuclear DNA content of Gossypium species. Ann Bot 95:789–797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herring AD, Auld DL, Ethridge MD et al (2004) Inheritance of fiber quality and lint yield in a chemically mutated population of cotton. Euphytica 136:333–339

    Article  Google Scholar 

  • Ibragimov S, Koval’chuk R (1970) Mutagenesis in cotton. Tr. In-t selektsii i semenovodstva khlopschatnika (Tashkent) 3(3):237–245

    Google Scholar 

  • James C (2013) Global status of commercialized biotech/GM crops: 2013. ISAAA Brief 35 No. 46. ISAAA, Ithaca, New York

    Google Scholar 

  • Kantartzi SK, Stewart MJ (2008) Association analysis of fibre traits in Gossypium arboreum accessions. Plant Breed 127(2):173–179

    Article  Google Scholar 

  • Kimber G (1961) Basic of the diploid-like meiotic behavior of polyploid cotton. Nature 191:98–99

    Article  Google Scholar 

  • Kranthi KR (2013) Cotton production in India. In: Manickam S, Sankaranarayanan K, Prakash AH (eds) Training manual on relevance and techniques of organic cotton production. CICR, Nagpur, January 21–25, 2013

    Google Scholar 

  • Krapovickas A, Seijo G (2008) Gossypium ekmanianum (Malvaceae), algodon silvestre de la Republica Dominicana. Bonplandia 17:55–63

    Google Scholar 

  • Lacape J, Llewellyn MD, Jacobs J et al (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol 10(1):132

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee SB, Kaittanis C, Jansen RK et al (2006) The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms. BMC Genomics 7(1):61

    Article  PubMed Central  PubMed  Google Scholar 

  • Levi A, Ovnat L, Paterson AH, Saranga Y (2009) Photosynthesis of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits. Plant Sci 177:88–96

    Article  CAS  Google Scholar 

  • Li HB, Qin YM, Pang Y et al (2007) A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development. New Phytol 175:462–471

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang C, Dong N et al (2012) QTL detection for node of first fruiting branch and its height in upland cotton (Gossypium hirsutum L.). Euphytica 188(3):441–451

    Article  CAS  Google Scholar 

  • Li P, Li Z, Liu H, Hua J (2013a) Cytoplasmic diversity of the cotton genus as revealed by chloroplast microsatellite markers. Genet Resour Crop Evol. doi:10.1007/s10722-013-0018-9

  • Li X, Yuan D, Zhang J et al (2013b) Genetic mapping and characteristics of genes specifically or preferentially expressed during fiber development in cotton. PLoS One 8(1):e54444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li F, Fan G, Wang K et al (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46(6). doi:10.1038/ng.2987

    Google Scholar 

  • Liang Q, Hu C, Hua H et al (2013) Construction of a linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Chin Sci Bull 58(26):3233–3243

    Article  CAS  Google Scholar 

  • Lin L, Pierce GJ, Bowers JE et al (2010) A draft physical map of a D-genome cotton species (Gossypium raimondii). BMC Genomics 11:395

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu R, Wang B, Guo W et al (2012) Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. Mol Breed 29(2):297–311

    Article  CAS  Google Scholar 

  • Liu G, Cao D, Li S et al (2013) The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes. PLoS One 8(8):e69476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu G, Li X, Jin S et al (2014) Overexpression of rice NAC Gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9(1):e86895

    Article  PubMed Central  PubMed  Google Scholar 

  • Long TA, Brady SM, Benfey PN (2008) Systems approaches to identifying gene regulatory networks in plants. Ann Rev Cell Dev Biol 24:81–103

    Article  CAS  Google Scholar 

  • Lowery CC, Auld DL, Bechere E et al (2007) Use of chemical mutagenesis in improving upland cotton. In: World Cotton Research Conference-4, International Cotton Advisory Committee (ICAC), Lubbock, Texas, USA, 10–14 Sept 2007

    Google Scholar 

  • Ma Q, Wu M, Pei W et al (2014) Quantitative phosphoproteomic profiling of fiber differentiation and initiation in a fiberless mutant of cotton. BMC Genomics 15(1):466

    Article  PubMed Central  PubMed  Google Scholar 

  • Massacci A, Nabiev SM, Pietrosanti L et al (2008) Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem 46:189–195

    Article  CAS  PubMed  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS et al (2009) Genetic properties of maize nested association mapping population. Science 325(5941):737–740

    Article  CAS  PubMed  Google Scholar 

  • Mei H, Ai N, Zhang X et al (2014) QTLs conferring FOV 7 resistance detected by linkage and association mapping in Upland cotton. Euphytica 197(2):237–249

    Article  Google Scholar 

  • Mittal A, Gampala SS, Ritchie GL et al (2014) Related to ABA‐Insensitive3 (ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnol J 12(5):578–589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narain P (2010) Quantitative genetics: past and present. Mol Breed 26(2):135–143

    Article  Google Scholar 

  • Padmalatha KV, Dhandapani G, Kanakachari M et al (2012) Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. Plant Mol Biol 78:223–246

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Dagaonkar VS, Phalak MS et al (2007) Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnol Rep 1:37–48

    Article  Google Scholar 

  • Qin H, Guo W, Zhang YM, Zhang T (2008) QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet 117:883–894

    Article  PubMed  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K et al (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36(1):1–19

    Article  CAS  Google Scholar 

  • Rong JK, Abbey C, Bowers JE et al (2004) A 3347- locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rong JK, Feltus FA, Waghmare VN et al (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176(4):2577–2588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salvi S, Tuberosa R (2007) Cloning QTLs in plants. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement, vol 1. Springer, New York, pp 207–226

    Chapter  Google Scholar 

  • Santhanam V, Sundaram V (1997) Agri history of cotton India – an overview. Asian Agric-Hist 1(4):235–251

    Google Scholar 

  • Seelanan T, Schnabel A, Wendel JF (1997) Congruence and consensus in the cotton tribe (Malvaceae). Syst Bot 22:259–290

    Article  Google Scholar 

  • Shi YH, Zhu SW, Mao XZ et al (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun FD, Zhang JH, Wang SF et al (2012) QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed 30(1):569–582

    Article  Google Scholar 

  • Tang W et al (2014) The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. New Phytol 202(2):509–520

    Article  CAS  PubMed  Google Scholar 

  • Townsend TP (2010) A balanced perspective on cotton: responding to valid problems, challenging irresponsible critics, Report of the Executive Director to the 69th Plenary Meeting of The International Cotton Advisory Committee, Lubbock, TX, USA, 20–25 Sept 2010

    Google Scholar 

  • Ulloa M, Brubaker C, Chee P (2007) Cotton. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 6, Technical Crops. Springer, Berlin, pp 43–63

    Google Scholar 

  • USDA (2014) http://search.usa.gov/search?utf8=%E2%9C%93&sc=0&query=cotton+bioinformatics&m=&affiliate=agriculturalresearchservicears&commit=Search, Accessed on 27 Aug 2014

  • Wang K, Wang Z, Li F et al (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44(10). doi:10.1038/ng.2371

  • Wang L et al (2014) Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling. Plant J 78(4):686–696

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF (1989) New world tetraploid cottons contain old world cytoplasm. Proc Natl Acad Sci U S A 86:4132–4136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wendel JF, Albert VA (1992) Phylogenetics of the cotton genus (Gossypium): characterstate weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Syst Bot 17:115–143

    Article  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Wilkins TA, Arpat AB (2005) The cotton fibre transcriptome. Physiol Plant 124:295–300

    Article  CAS  Google Scholar 

  • Wilkins TA, Jernstedt JA (1999) Molecular genetics of developing cotton fibers. Hawthorne Press, New York

    Google Scholar 

  • Winter P, Kahl G (1995) Molecular marker technologies for plant improvement. World J Microbiol Biotechnol 11(4):438–448

    Article  CAS  PubMed  Google Scholar 

  • Wu XP, Cheng YS, Liu JY (2007) Microwave-enhanced ink staining for fast and sensitive protein quantification in proteomic studies. J Protein Res 6:387–391

    Article  CAS  Google Scholar 

  • Xu Y, Li Z, Thomson MJ (2012) Molecular breeding in plants: moving into the mainstream. Mol Breed 29:831–832

    Article  Google Scholar 

  • Yao Y, Yang YW, Liu JY (2006) An efficient protein preparation for proteomic analysis of developing cotton fibers by 2-D. Electrophoresis 27:4559–4569

    Article  CAS  PubMed  Google Scholar 

  • Zhang B (ed) (2013a) Transgenic cotton: methods and protocols. Humana Press, New Jersey, 277 p

    Google Scholar 

  • Zhang B (2013b) Transgenic cotton: from biotransformation methods to agricultural application. Methods Mol Biol 958:3–15

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Zhang J, Ma J et al (2012) Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.). Mol Breed 29(2):335–348

    Article  Google Scholar 

  • Zhiyuan N, Chen H, Mei H, Zhang T (2014) Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema. Euphytica 195(1):143–156

    Article  Google Scholar 

  • Zhu M, Yu M, Zhao S (2009) Understanding quantitative genetics in the systems biology era. Int J Biol Sci 5(2):161–170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Manikanda Boopathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boopathi, N.M., Sathish, S., Kavitha, P., Dachinamoorthy, P., Ravikesavan, R. (2015). Molecular Breeding for Genetic Improvement of Cotton (Gossypium spp.). In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, Cham. https://doi.org/10.1007/978-3-319-22521-0_21

Download citation

Publish with us

Policies and ethics