Skip to main content

Abstract

Recent incorporation of new molecular technologies, for example genomics and molecular markers, to the conventional plant breeding methods has resulted in a paradigm shift in crop improvement strategies. Proteomics is a comparatively new tool which is gradually becoming essential for the new generation of plant breeders because it is capable of providing new insights at cellular levels. Proteome, a translational version of a genome, is vital to expose molecular mechanisms essential for plant growth, development, and their interactions with physical and biological environment. A specific advantage of proteomics over all other -omics methods in crop breeding advancement is its ability to consider post-translational modifications that reflect the functional impressions of protein modifications on crop plant productivity. In this chapter we discuss various proteomic techniques, with examples of their applications for the advancement of conventional crop breeding programs. Proteomic methods can be used to measure subtle changes in protein expression levels in response to selective breeding, and for biotic and abiotic stress tolerance studies among different germplasm or cultivars. We demonstrate that the prospects of possible inclusion of proteomic techniques will lead to stronger crop breeding programs and a solid food security in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu IA, Farinha AP, Negrao S et al (2013) Coping with abiotic stress: proteome changes for crop improvement. J Proteomics 93:145–168. doi:10.1016/j.jprot.2013.07.014

    Article  CAS  PubMed  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    Article  CAS  PubMed  Google Scholar 

  • Agrios G (2005) Plant pathology, 5th edn. Academic Press, New York

    Google Scholar 

  • Ahmed F, Rafii MY, Ismail MR et al (2013) Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects. Biomed Res Int 2013:963525. doi:10.1155/2013/963525

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ali F, Yan J (2012) Disease resistance in maize and the role of molecular breeding in defending against global threat. J Integr Plant Biol 54(3):134–151. doi:10.1111/j.1744-7909.2012.01105.x

    Article  CAS  PubMed  Google Scholar 

  • Allwood JW, Parker D, Beckmann M et al (2012) Fourier transform ion cyclotron resonance mass spectrometry for plant metabolite profiling and metabolite identification. In: Plant metabolomics. Springer, New York, pp 157–176

    Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28(1):169–183. doi:10.1016/j.biotechadv.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Voesenek L (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Balbuena TS, Dias LL, Martins ML et al (2011) Challenges in proteome analyses of tropical plants. Braz J Plant Physiol 23(2):91–104

    Article  CAS  Google Scholar 

  • Bänziger M (2000) Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. CIMMYT, Mexico

    Google Scholar 

  • Baranwal VK, Mikkilineni V, Zehr UB et al (2012) Heterosis: emerging ideas about hybrid vigour. J Exp Bot 63(18):6309–6314. doi:10.1093/jxb/ers291

    Article  CAS  PubMed  Google Scholar 

  • Barkla BJ, Castellanos-Cervantes T, de Leon JL et al (2013a) Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics—current achievements and perspectives. Proteomics 13(12–13):1885–1900. doi:10.1002/pmic.201200399

    Article  CAS  PubMed  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Pantoja O (2013b) Progress and challenges for abiotic stress proteomics of crop plants. Proteomics 13(12–13):1801–1815. doi:10.1002/pmic.201200401

    Article  CAS  PubMed  Google Scholar 

  • Benesova M, Hola D, Fischer L et al (2012) The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS One 7(6), e38017. doi:10.1371/journal.pone.0038017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernardo L, Prinsi B, Negri AS et al (2012) Proteomic characterization of the rph15 barley resistance gene-mediated defence responses to leaf rust. BMC Genomics 13:642. doi:10.1186/1471-2164-13-642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhalerao RP, Salchert K, Bakó L et al (1999) Regulatory interaction of prl1 wd protein with arabidopsis snf1-like protein kinases. Proc Natl Acad Sci 96(9):5322–5327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boguth G, Harder A, Scheibe B et al (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21(6):1037–1053

    Article  PubMed  Google Scholar 

  • Bouchez D, Höfte H (1998) Functional genomics in plants. Plant Physiol 118(3):725–732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Casasoli M, Spadoni S, Lilley KS et al (2008) Identification by 2‐D DIGE of apoplastic proteins regulated by oligogalacturonides in arabidopsis thaliana. Proteomics 8(5):1042–1054

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6(20):5504–5516

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451

    Article  CAS  PubMed  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B Biol Sci 363(1491):557–572

    Article  CAS  Google Scholar 

  • Cui S, Huang F, Wang J et al (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5(12):3162–3172. doi:10.1002/pmic.200401148

    Article  CAS  PubMed  Google Scholar 

  • Damerval C, Maurice A, Josse J et al (1994) Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137(1):289–301

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dat JF, Capelli N, Folzer H et al (2004) Sensing and signalling during plant flooding. Plant Physiol Biochem 42(4):273–282

    Article  CAS  PubMed  Google Scholar 

  • Delmer DP (2005) Agriculture in the developing world: connecting innovations in plant research to downstream applications. Proc Natl Acad Sci U S A 102(44):15739–15746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278(5338):680–686

    Article  CAS  PubMed  Google Scholar 

  • Deswal R, Gupta R, Dogra V et al (2013) Plant proteomics in India and Nepal: current status and challenges ahead. Physiol Mol Biol Plants 19(4):461–477. doi:10.1007/s12298-013-0198-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunkley TP, Dupree P, Watson RB et al (2004) The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in arabidopsis thaliana. Biochem Soc Trans 32(Pt3):520–523. doi:10.1042/BST0320520

    Article  CAS  PubMed  Google Scholar 

  • Duvick DN (1996) Plant breeding, an evolutionary concept. Crop Sci 36(3):539–548

    Article  Google Scholar 

  • Eldakak M, Milad SI, Nawar AI et al (2013) Proteomics: a biotechnology tool for crop improvement. Front Plant Sci 4:35

    Article  PubMed Central  PubMed  Google Scholar 

  • FAO (2014) Food and agriculture organization of the United Nations. http://www.fao.org/hunger/en/. Accessed 29 May 2014

  • Gamble E (1962) Gene effects in corn (Zea mays l.): I. Separation and relative importance of gene effects for yield. Can J Plant Sci 42(2):339–348

    Article  Google Scholar 

  • Gao L, Yan X, Li X et al (2011) Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). Phytochemistry 72(10):1180–1191

    Article  CAS  PubMed  Google Scholar 

  • Ghosh D, Xu J (2014) Abiotic stress responses in plant roots: a proteomics perspective. Front Plant Sci 5:6. doi:10.3389/fpls.2014.00006

    Article  PubMed Central  PubMed  Google Scholar 

  • Gisladottir G, Stocking M (2005) Land degradation control and its global environmental benefits. Land Degrad Dev 16(2):99–112

    Article  Google Scholar 

  • Gong CY, Wang T (2013) Proteomic evaluation of genetically modified crops: current status and challenges. Front Plant Sci 4:1–8. doi:10.3389/fpls.2013.00041

    Article  Google Scholar 

  • Gong CY, Li Q, Yu HT et al (2012) Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation. J Proteome Res 11(5):3019–3029. doi:10.1021/pr300148w

    Article  CAS  PubMed  Google Scholar 

  • González-Fernández R, Jorrin-Novo JV (2010) Proteomics of fungal plant pathogens: the case of Botrytis cinerea. In: Current research technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, pp 205–217

    Google Scholar 

  • Görg A, Weiss W, Dunn MJ (2004) Current two‐dimensional electrophoresis technology for proteomics. Proteomics 4(12):3665–3685

    Article  PubMed  CAS  Google Scholar 

  • Gorg A, Drews O, Luck C et al (2009) 2-de with IPGs. Electrophoresis 30(Suppl 1):S122–S132. doi:10.1002/elps.200900051

    Article  PubMed  Google Scholar 

  • Gruhler A, Schulze WX, Matthiesen R et al (2005) Stable isotope labeling of arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol Cell Proteomics 4(11):1697–1709. doi:10.1074/mcp.M500190-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  CAS  PubMed  Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H et al (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5(4):950–960. doi:10.1002/pmic.200401101

    Article  CAS  PubMed  Google Scholar 

  • Hajheidari M, Eivazi A, Buchanan BB et al (2007) Proteomics uncovers a role for redox in drought tolerance in wheat. J Proteome Res 6(4):1451–1460. doi:10.1021/pr060570j

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM et al (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hashiguchi A, Ahsan N, Komatsu S (2010) Proteomics application of crops in the context of climatic changes. Food Res Int 43(7):1803–1813

    Article  CAS  Google Scholar 

  • Hashimoto M, Toorchi M, Matsushita K et al (2009) Proteome analysis of rice root plasma membrane and detection of cold stress responsive proteins. Protein Pept Lett 16(6):685–697

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Coombes KR, Morris JS et al (2005) The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales. Brief Funct Genomic Proteomic 3(4):322–331

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Xu C (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. J Integr Plant Biol 50(10):1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Humphery‐Smith I, Cordwell SJ, Blackstock WP (1997) Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis 18(8):1217–1242

    Article  PubMed  Google Scholar 

  • James C (1998) Global review of commercialized transgenic crops: 1998, vol 8. ISAAA, Ithaca

    Google Scholar 

  • Janská A, Maršík P, Zelenková S et al (2010) Cold stress and acclimation–what is important for metabolic adjustment? Plant Biol 12(3):395–405

    Article  PubMed  CAS  Google Scholar 

  • Kang S, Chen S, Dai S (2010) Proteomics characteristics of rice leaves in response to environmental factors. Front Biol 5(3):246–254

    Article  CAS  Google Scholar 

  • Kausar R, Arshad M, Shahzad A et al (2013) Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Amino Acids 44(2):345–359. doi:10.1007/s00726-012-1338-3

    Article  CAS  PubMed  Google Scholar 

  • Kav NN, Srivastava S, Yajima W et al (2007) Application of proteomics to investigate plant-microbe interactions. Curr Proteomics 4(1):28–43

    Article  CAS  Google Scholar 

  • Keeler M, Letarte J, Hattrup E et al (2007) Two-dimensional differential in-gel electrophoresis (DIGE) of leaf and roots of lycopersicon esculentum. Methods Mol Biol 355:157–174. doi:10.1385/1-59745-227-0:157

    CAS  PubMed  Google Scholar 

  • Khush GS (2000) New plant type of rice for increasing the genetic yield potential. In: Nanda JS (ed) Rice breeding and genetics, research priorities and challenges. Science Publishers, Enfield, pp 99–108

    Google Scholar 

  • Kim DW, Agrawal GK, Rakwal R et al (2014) Genomic methods for improving abiotic stress tolerance in crops. In: Ricroch A, Chopra S, Fleischer S (eds) Plant biotechnology: experience and future prospects. Springer International Publishing, Cham. doi:10.1007/978-3-319-06892-3__4

    Google Scholar 

  • Koehler G, Wilson RC, Goodpaster JV et al (2012) Proteomic study of low-temperature responses in strawberry cultivars (fragaria x ananassa) that differ in cold tolerance. Plant Physiol 159(4):1787–1805. doi:10.1104/pp. 112.198267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Komatsu S, Kobayashi Y, Nishizawa K et al (2010) Comparative proteomics analysis of differentially expressed proteins in soybean cell wall during flooding stress. Amino Acids 39(5):1435–1449. doi:10.1007/s00726-010-0608-1

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Hiraga S, Yanagawa Y (2012) Proteomics techniques for the development of flood tolerant crops. J Proteome Res 11(1):68–78. doi:10.1021/pr2008863

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Mock H-P, Yang P et al (2013a) Application of proteomics for improving crop protection/artificial regulation. Front Plant Sci 4:1–3. doi:10.3389/fpls.2013.00522

    Google Scholar 

  • Komatsu S, Nanjo Y, Nishimura M (2013b) Proteomic analysis of the flooding tolerance mechanism in mutant soybean. J Proteomics 79:231–250. doi:10.1016/j.jprot.2012.12.023

    Article  CAS  PubMed  Google Scholar 

  • Kopka J, Fernie A, Weckwerth W et al (2004) Metabolite profiling in plant biology: platforms and destinations. Genome Biol 5(6):109

    Article  PubMed Central  PubMed  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT et al (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteomics 74(8):1301–1322

    Article  PubMed  CAS  Google Scholar 

  • Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Ahsan N, Lee SH et al (2007) A proteomic approach in analyzing heat‐responsive proteins in rice leaves. Proteomics 7(18):3369–3383

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Jiang W, Qiao Y et al (2011) Shotgun proteomic analysis for detecting differentially expressed proteins in the reduced culm number rice. Proteomics 11(3):455–468. doi:10.1002/pmic.201000077

    Article  CAS  PubMed  Google Scholar 

  • Lewandowska D, ten Have S, Hodge K et al (2013) Plant silac: stable-isotope labelling with amino acids of arabidopsis seedlings for quantitative proteomics. PLoS One 8(8), e72207. doi:10.1371/journal.pone.0072207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin SK, Chang MC, Tsai YG et al (2005) Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5(8):2140–2156

    Article  CAS  PubMed  Google Scholar 

  • Majoul T, Bancel E, Triboï E et al (2004) Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat‐responsive proteins from non‐prolamins fraction. Proteomics 4(2):505–513

    Article  CAS  PubMed  Google Scholar 

  • Mann M (2006) Functional and quantitative proteomics using silac. Nat Rev Mol Cell Biol 7(12):952–958

    Article  CAS  PubMed  Google Scholar 

  • Masson F, Rossignol M (1995) Basic plasticity of protein expression in tobacco leaf plasma membrane. Plant J 8(1):77–85

    Article  CAS  Google Scholar 

  • Matros A, Kaspar S, Witzel K et al (2011) Recent progress in liquid chromatography-based separation and label-free quantitative plant proteomics. Phytochemistry 72(10):963–974

    Article  CAS  PubMed  Google Scholar 

  • Minami A, Kawamura Y, Yamazaki T et al (2009) Plasma membrane and plant freezing tolerance: possible involvement of plasma membrane microdomains in cold acclimation. In: Plant cold hardiness: from the laboratory to the field. CAB International, Wallingford, pp 62–71

    Chapter  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147(3):969–977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nilo R, Saffie C, Lilley K et al (2010) Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genomics 11:43. doi:10.1186/1471-2164-11-43

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • O’Farrell PZ, Goodman HM, O’Farrell PH (1977) High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12(4):1133–1142

    Article  PubMed  Google Scholar 

  • Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33:311–323

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Huang J, Sheehy JE et al (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101(27):9971–9975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pretty J (2000) Food security through sustainable agriculture. In: Novartis foundation for sustainable development symposium. Nutrition and Development

    Google Scholar 

  • Rampitsch C, Bykova NV (2012) Proteomics and plant disease: advances in combating a major threat to the global food supply. Proteomics 12(4–5):673–690

    Article  CAS  PubMed  Google Scholar 

  • Richards R, López-Castañeda C, Gomez-Macpherson H et al (1993) Improving the efficiency of water use by plant breeding and molecular biology. Irrig Sci 14(2):93–104

    Article  Google Scholar 

  • Rinalducci S, Egidi MG, Karimzadeh G et al (2011) Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis 32(14):1807–1818. doi:10.1002/elps.201000663

    Article  CAS  PubMed  Google Scholar 

  • Robbins ML, Roy A, Wang PH et al (2013) Comparative proteomics analysis by DIGE and iTRAQ provides insight into the regulation of phenylpropanoids in maize. J Proteomics 93:254–275. doi:10.1016/j.jprot.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  • Rohila JS, Fromm ME (2008) Tap-tagging system in rice for protein complex isolation. In: Plant proteomics. Wiley, Hoboken, pp 525–542. doi:10.1002/9780470369630.ch36

    Chapter  Google Scholar 

  • Rohila JS, Chen M, Cerny R et al (2004) Improved tandem affinity purification tag and methods for isolation of protein heterocomplexes from plants. Plant J 38(1):172–181. doi:10.1111/j.1365-313X.2004.02031.x

    Article  CAS  PubMed  Google Scholar 

  • Rohila JS, Chen M, Chen S et al (2006) Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J 46(1):1–13. doi:10.1111/j.1365-313X.2006.02671.x

    Article  CAS  PubMed  Google Scholar 

  • Rohila JS, Chen M, Chen S et al (2009) Protein-protein interactions of tandem affinity purified protein kinases from rice. PLoS One 4(8), e6685. doi:10.1371/journal.pone.0006685

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rombouts I, Lagrain B, Brunnbauer M et al (2013) Improved identification of wheat gluten proteins through alkylation of cysteine residues and peptide-based mass spectrometry. Sci Rep 3:2279. doi:10.1038/srep02279

    Article  PubMed Central  PubMed  Google Scholar 

  • Roy A, Rushton PJ, Rohila JS (2011) The potential of proteomics technologies for crop improvement under drought conditions. Crit Rev Plant Sci 30(5):471–490

    Article  CAS  Google Scholar 

  • Rubio V, Shen Y, Saijo Y et al (2005) An alternative tandem affinity purification strategy applied to arabidopsis protein complex isolation. Plant J 41(5):767–778. doi:10.1111/j.1365-313X.2004.02328.x

    Article  CAS  PubMed  Google Scholar 

  • Sabel MS, Liu Y, Lubman DM (2011) Proteomics in melanoma biomarker discovery: great potential, many obstacles. Int J Proteomics 2011:1–8

    Google Scholar 

  • Salekdeh GH, Komatsu S (2007) Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics 7(16):2976–2996

    Article  CAS  PubMed  Google Scholar 

  • Santoni V, Rouquié D, Doumas P et al (1998) Use of a proteome strategy for tagging proteins present at the plasma membrane. Plant J 16(5):633–641

    Article  CAS  PubMed  Google Scholar 

  • Satake T, Yoshida S (1978) High temperature-induced sterility in indica rices at flowering. Proc Crop Sci Soc Jpn 47(1):6–17

    Google Scholar 

  • Savidor A, Donahoo RS, Hurtado-Gonzales O et al (2008) Cross-species global proteomics reveals conserved and unique processes in phytophthora sojae and phytophthora ramorum. Mol Cell Proteomics 7(8):1501–1516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schaff JE, Mbeunkui F, Blackburn K et al (2008) Silip: a novel stable isotope labeling method for in planta quantitative proteomic analysis. Plant J 56(5):840–854

    Article  CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  CAS  PubMed  Google Scholar 

  • Schulze WX, Usadel B (2010) Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol 61:491–516

    Article  CAS  PubMed  Google Scholar 

  • Sethuraman M, McComb ME, Huang H et al (2004) Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res 3(6):1228–1233

    Article  CAS  PubMed  Google Scholar 

  • Shiio Y, Aebersold R (2006) Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat Protoc 1(1):139–145

    Article  CAS  PubMed  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Phytopathology 43:83–116. doi:10.1146/annurev.phyto.43.113004.133839

    Article  CAS  Google Scholar 

  • Striker GG (2012) Flooding stress on plants: anatomical, morphological and physiological responses. Botany InTech, Rijeka, pp 3–28. doi:10.5772/2245

    Google Scholar 

  • Takahashi D, Li B, Nakayama T et al (2013) Plant plasma membrane proteomics for improving cold tolerance. Front Plant Sci 4:90. doi:10.3389/fpls.2013.00090

    PubMed Central  PubMed  Google Scholar 

  • Tanksley S, Nelson J (1996) Advanced backcross qtl analysis: a method for the simultaneous discovery and transfer of valuable qtls from unadapted germplasm into elite breeding lines. Theor Appl Genet 92(2):191–203

    Article  CAS  PubMed  Google Scholar 

  • Teng P, Shane W, MacKenzie DR (1984) Crop losses due to plant pathogens. Crit Rev Plant Sci 2(1):21–47

    Article  Google Scholar 

  • Teshima R, Nakamura R, Satoh R et al (2010) 2D-DIGE analysis of rice proteins from different cultivars. Regul Toxicol Pharmacol 58(3 Suppl):S30–S35. doi:10.1016/j.yrtph.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327(5967):818–822

    Article  CAS  PubMed  Google Scholar 

  • Thelen JJ, Peck SC (2007) Quantitative proteomics in plants: choices in abundance. Plant Cell 19(11):3339–3346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thiellement H, Bahrman N, Damerval C et al (1999) Proteomics for genetic and physiological studies in plants. Electrophoresis 20(10):2013–2026

    Article  CAS  PubMed  Google Scholar 

  • Turan S, Cornish K, Kumar S (2012) Salinity tolerance in plants: breeding and genetic engineering. Aust J Crop Sci 6(9):1337

    Google Scholar 

  • Tyers M, Mann M (2003) From genomics to proteomics. Nature 422(6928):193–197

    Article  CAS  PubMed  Google Scholar 

  • Ünlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis 18(11):2071–2077

    Article  PubMed  Google Scholar 

  • Van den Bergh G, Arckens L (2004) Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr Opin Biotechnol 15(1):38–43

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan S, Ünlü M, Minden JS (2006) Two-dimensional difference gel electrophoresis. Nat Protoc 1(3):1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yang L, Xu H et al (2005) Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 5(17):4496–4503. doi:10.1002/pmic.200401317

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Peng X, Ji Y et al (2013) Gene, protein, and network of male sterility in rice. Front Plant Sci 4:1–10. doi:10.3389/fpls.2013.00092

    Google Scholar 

  • Westermeier R, Marouga R (2005) Protein detection methods in proteomics research. Biosci Rep 25:19–32

    Article  CAS  PubMed  Google Scholar 

  • Whitelegge JP (2004) Mass spectrometry for high throughput quantitative proteomics in plant research: lessons from thylakoid membranes. Plant Physiol Biochem 42(12):919–927

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30(3):515–527

    Article  CAS  Google Scholar 

  • Yan S, Tang Z, Su W et al (2005) Proteomic analysis of salt stress‐responsive proteins in rice root. Proteomics 5(1):235–244

    Article  CAS  PubMed  Google Scholar 

  • Yang M-F, Liu Y-J, Liu Y et al (2009) Proteomic analysis of oil mobilization in seed germination and postgermination development of Jatropha curcas. J Proteome Res 8(3):1441–1451

    Article  CAS  PubMed  Google Scholar 

  • Yokoi S, Bressan RA, Hasegawa PM (2002) Salt stress tolerance of plants. JIRCAS Work Rep 23(01):25–33

    CAS  Google Scholar 

  • Zabrouskov V, Giacomelli L, van Wijk KJ et al (2003) A new approach for plant proteomics characterization of chloroplast proteins of arabidopsis thaliana by top-down mass spectrometry. Mol Cell Proteomics 2(12):1253–1260

    Article  CAS  PubMed  Google Scholar 

  • Zadraznik T, Hollung K, Egge-Jacobsen W et al (2013) Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris l.). J Proteomics 78:254–272. doi:10.1016/j.jprot.2012.09.021

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Han B, Wang T et al (2011) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11(1):49–67

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Han B, Wang T et al (2012) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11(1):49–67. doi:10.1021/pr200861w

    Article  PubMed  CAS  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  CAS  PubMed  Google Scholar 

  • Zieske LR (2006) A perspective on the use of iTRAQ™ reagent technology for protein complex and profiling studies. J Exp Bot 57(7):1501–1508

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Liu C, Chen X (2011) Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. Plant Cell Rep 30(12):2155–2165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from USDA/SunGrant, SD Agriculture Experiment Station, SD Wheat Commission and SD Soybean Research and Promotion Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai S. Rohila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Das, A., Paudel, B., Rohila, J.S. (2015). Potentials of Proteomics in Crop Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, Cham. https://doi.org/10.1007/978-3-319-22521-0_18

Download citation

Publish with us

Policies and ethics