Skip to main content

Abstract

In recent years, transgenic pyramiding or stacking technology has gradually developed with the rapid development of genetically modified (GM) crops. This technology has unique advantages compared with the transgenic technology of a single gene. Transgenic pyramiding technology can simultaneously modify several traits of a crop, particularly the metabolic pathways and yield traits that are usually controlled by multiple genes. A batch of second generation GM crops with stacked traits has been commercialized, which mainly include resistances to pest and herbicide, and exhibit great application potential of transgenic pyramiding breeding. The present stacked GM crops are developed mainly through the integrated use of vector-based pyramiding and molecular marker assisted selection (MAS) based crossing/backcrossing pyramiding. Advances of vector based pyramiding technologies have been achieved on large capacity vectors, multiple-gene assembling, plastid transformation, polyprotein expression system and combinatorial genetic transformation. The combination of transgenic pyramiding and MAS-based pyramiding will help to effectively pyramid more targeted genes together. The advance of single nucleotide polymorphism (SNP) discovery and detecting technology has greatly promoted the MAS-based pyramiding in crop breeding. The rapid development of commercialized stacked GM crops, plant metabolic engineering and crop improvement for disease resistance have proved the successful applications of transgenic pyramiding. The present review discusses the advances of transgenic pyramiding technology, the application of transgenic pyramiding in crop improvement and the prospects and challenges of transgenic pyramiding breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbadi A, Domergue F, Bauer J et al (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16(10):2734–2748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aluru M, Xu Y, Guo R et al (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59(13):3551–3562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Azadi P, Otang NV, Chin DP et al (2010) Metabolic engineering of Lilium × formolongi using multiple genes of the carotenoid biosynthesis pathway. Plant Biotechnol Rep 4(4):269–280

    Article  Google Scholar 

  • Bates SL, Zhao JZ, Roush RT et al (2005) Insect resistance management in GM crops:past, present and future. Nat Biotechnol 23(1):57–62

    Article  CAS  PubMed  Google Scholar 

  • Bohmert-Tatarev K, McAvoy S, Daughtry S et al (2011) High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol 155(4):1690–1708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buntru M, Gärtner S, Staib L et al (2013) Delivery of multiple transgenes to plant cells by an improved version of MultiRound Gateway technology. Transgenic Res 22(1):153–167

    Article  CAS  PubMed  Google Scholar 

  • Carciofi M, Blennow A, Jensen SL et al (2012) Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biol 12(1):223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang YL, Henriquez X, Preuss D et al (2003) A plant-transformation-competent BIBAC library from the Arabidopsis thaliana Landsberg ecotype for functional and comparative genomics. Theor Appl Genet 106(2):269–276

    CAS  PubMed  Google Scholar 

  • Chen QJ, Zhou HM, Chen J et al (2006) A Gateway-based platform for multigene plant transformation. Plant Mol Biol 62(6):927–936

    Article  CAS  PubMed  Google Scholar 

  • Chen QJ, Xie M, Ma XX et al (2010) MISSA is a highly efficient in vivo DNA assembly method for plant multiple-gene transformation. Plant Physiol 153(1):41–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen H, He H, Zou Y et al (2011) Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.). Theor Appl Genet 123(6):869–879

    Article  PubMed  Google Scholar 

  • Cheng B, Wu G, Vrinten P et al (2010) Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters. Transgenic Res 19(2):221–229

    Article  CAS  PubMed  Google Scholar 

  • Cui C, Song F, Tan Y et al (2011) Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.). Acta Biochim Biophys Sin 43(4):284–291

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Lee SB, Pahchal T et al (2001) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311(5):1001–1009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12(7):499–510

    Article  CAS  PubMed  Google Scholar 

  • de Felipe P, Hughes LE, Ryan MD et al (2003) Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem 278(13):11441–11448

    Article  PubMed  Google Scholar 

  • Diretto G, Al-Babili S, Tavazza R et al (2007) Metabolic engineering of potato carotenoid content through tubers-specific overexpression of a bacterial mini-pathway. PLoS One 2(4), e350

    Article  PubMed Central  PubMed  Google Scholar 

  • Dokku P, Das KM, Rao GJN (2013) Pyramiding of four resistance genes of bacterial blight in Tapaswini, an elite rice cultivar, through marker-assisted selection. Euphytica 192(1):87–96

    Article  Google Scholar 

  • el Amrani A, Barakate A, Askari BM et al (2004) Coordinate expression and independent subcellular targeting of multiple proteins from a single transgene. Plant Physiol 135(1):16–24

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan C, Yu S, Wang C et al (2009) A causal C–A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet 118(3):465–472

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Qian JJ, Yi S et al (2005) Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 23(5):584–590

    Article  CAS  PubMed  Google Scholar 

  • Farre G, Naqvi S, Sanahuja G et al (2012) Combinatorial genetic transformation of cereals and the creation of metabolic libraries for the carotenoid pathway. Methods Mol Biol 847:419–435

    Article  CAS  PubMed  Google Scholar 

  • Ferguson ME, Hearne SJ, Close TJ et al (2012) Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theor Appl Genet 124(4):685–695

    Article  CAS  PubMed  Google Scholar 

  • Flores T, Karpova O, Su X et al (2008) Silencing of the GmFAD3 gene by siRNA leads to low a-linolenic acids (18:3) offad3-mutant phenotype in soybean Glycine max (Merr.). Transgenic Res 17:839–850

    Article  CAS  PubMed  Google Scholar 

  • François IE, De Bolle MF, Dwyer G et al (2002) Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol 128(4):1346–1358

    Article  PubMed Central  PubMed  Google Scholar 

  • François IE, Van Hemelrijck W, Aerts AM et al (2004) Processing in Arabidopsis thaliana of a heterologous polyprotein resulting in differential targeting of the individual plant defensins. Plant Sci 166(1):113–121

    Article  Google Scholar 

  • Fujisawa M, Takita E, Harada H et al (2009) Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot 60(4):1319–1332

    Article  CAS  PubMed  Google Scholar 

  • Ghimire MN, Huang F, Leonard R et al (2011) Susceptibility of Cry1Ab-susceptible and -resistant sugarcane borer to transgenic corn plants containing single or pyramided Bacillus thuringiensis genes. Crop Prot 30(1):74–81

    Article  CAS  Google Scholar 

  • Gibson DG, Benders GA, Axelrod KC (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Nat Acad Sci 105(51):20404–20409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gibson DG, Young L, Chuang RY (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  PubMed  Google Scholar 

  • GM Approval Database (2004) ISAAA. http://www.isaaa.org/gmapprovaldatabase/. Accessed 12 Feb 2004

  • Goyal A, Bhowmik PK, Basu SK (2009) Minichromosomes: the second generation genetic engineering tool. Plant Omics J 2(1):1–8

    CAS  Google Scholar 

  • Ha SH, Liang YS, Jung H et al (2010) Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol J 8(8):928–938

    Article  CAS  PubMed  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants–the challenge for 21st century plant biotechnology. Plant Biotechnol 3(2):141–155

    Article  CAS  Google Scholar 

  • Hamilton CM, Frary A, Xu Y (1999) Construction of tomato genomic DNA libraries in a binary-BAC (BIBAC) vector. Plant J 18(2):223–229

    Article  CAS  Google Scholar 

  • Hou BK, Zhou YH, Wan LH et al (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12(1):111–114

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Li X, Wu C et al (2012) Pyramiding and evaluation of the brown planthopper resistance genes Bph14 and Bph15 in hybrid rice. Mol Breed 29(1):61–69

    Article  Google Scholar 

  • Huang JC, Zhong YJ, Liu J et al (2013) Metabolic engineering of tomato for high-yield production of astaxanthin. Metab Eng 17(100):59–67

    Article  CAS  PubMed  Google Scholar 

  • Huang N, Angeles ER, Domingo J et al (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95(3):313–320

    Article  CAS  Google Scholar 

  • James C (2013) Global status of commercialized Biotech/GM Crops. ISAAA, Ithaca

    Google Scholar 

  • Jha S, Chattoo BB (2009) Transgene stacking and coordinated expression of plant defensins confer fungal resistance in rice. Rice 2(4):143–154

    Article  Google Scholar 

  • Jiang H, Feng Y, Bao L et al (2012) Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Mol Breed 30(4):1679–1688

    Article  CAS  Google Scholar 

  • Jiang L, Yu X, Qi X et al (2013) Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgenic Res 22(6):1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Lee SR, Li LH et al (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6(4), e18556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kong FN, Jiang SM, Shi LX (2006) Construction and characterization of a transformation-competent artificial chromosome (TAC) library of Zizania latifolia (Griseb.). Plant Mol Biol Report 24(2):219–227

    Article  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56(2):203–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lange BM, Mahmoud SS, Wildung MR et al (2011) Improving peppermint essential oil yield and composition by metabolic engineering. Proc Nat Acad Sci 108(41):16944–16949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SM, Kang K, Chung H et al (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21(3):401–410

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Meth 4(3):251–256

    Article  CAS  Google Scholar 

  • Li MZ, Elledge SJ (2012) SLIC: a method for sequence-and ligation-independent cloning. Methods Mol Biol 852:51–59

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Liu YG, Xu X (2003) Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc Nat Acad Sci 100:5962–5967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu Y, Rijzaani H, Karcher D et al (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Nat Acad Sci 110(8):E623–E632

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma C, Mitra A (2002) Expressing multiple genes in a single open reading frame with the 2A region of foot-and-mouth disease virus as a linker. Mol Breed 9(3):191–199

    Article  CAS  Google Scholar 

  • Murata M, Shibata F, Hironaka A et al (2013) Generation of an artificial ring chromosome in Arabidopsis by Cre/LoxP-mediated recombination. Plant J 74(3):363–371

    Article  CAS  PubMed  Google Scholar 

  • Naqvi S, Farré G, Zhu C et al (2011) Simultaneous expression of Arabidopsis ρ-hydroxyphenylpyruvate dioxygenase and MPBQ methyltransferase in transgenic corn kernels triples the tocopherol content. Transgenic Res 20(1):177–181

    Article  CAS  PubMed  Google Scholar 

  • Naqvi S, Zhu C, Farre G et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Nat Acad Sci 106(19):7762–7767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen TX, Nguyen T, Alameldin H et al (2013) Transgene pyramiding of the HVA1 and mtlD in T3 maize (Zea mays L.) plants confers drought and salt tolerance, along with an increase in crop biomass. Int J Agron, doi:10.1155/2013/598163

  • Paine JA, Shipton CA, Chaggar S et al (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23(4):482–487

    Article  CAS  PubMed  Google Scholar 

  • Petrie JR, Shrestha P, Zhou XR et al (2012) Metabolic engineering plant seeds with fish oil-like levels of DHA. PLoS One 7(11), e49165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qi B, Fraser T, Mugford S et al (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22(6):739–745

    Article  CAS  PubMed  Google Scholar 

  • Qu S, Coaker G, Francis D (2003) Development of a new transformation-competent artificial chromosome (TAC) vector and construction of tomato and rice TAC libraries. Mol Breed 12(4):297–308

    Article  CAS  Google Scholar 

  • Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4(7), e6441

    Article  PubMed Central  PubMed  Google Scholar 

  • Regina A, Kosar-Hashemi B, Ling S et al (2010) Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme IIa and IIb. J Exp Bot 61(5):1469–1482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robert SS, Singh SP, Zhou XR et al (2005) Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Func Plant Biol 32(6):473–479

    Article  CAS  Google Scholar 

  • Ruf S, Hermann M, Berger I et al (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19(9):870–875

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lopez N, Haslam RP, Napier JA et al (2014) Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J 77(2):198–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruiz-Lopez N, Haslam RP, Usher SL et al (2013) Reconstitution of EPA and DHA biosynthesis in Arabidopsis: iterative metabolic engineering for the synthesis of n − 3 LC-PUFAs in transgenic plants. Metab Eng 17(100):30–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryan MD, Drew J (1994) Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J 13(4):928–933

    PubMed Central  CAS  PubMed  Google Scholar 

  • SanGiovanni JP, Chew EY (2005) The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 24(1):87–138

    Article  CAS  PubMed  Google Scholar 

  • Sarrion-Perdigones A, Falconi EE, Zandalinas SI et al (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6(7), e21622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sasaki Y, Sone T, Yoshida S et al (2004) Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by the Multisite Gateway system. J Biotechnol 107(3):233–243

    Article  CAS  PubMed  Google Scholar 

  • Seeb JE, Carvalho G, Hauser L et al (2011) Single‐nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Mol Ecol Res 11(s1):1–8

    Article  Google Scholar 

  • Sidorov VA, Kasten D, Pang SZ et al (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19(2):209–216

    Article  CAS  PubMed  Google Scholar 

  • Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 12(1):115–122

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Lang Z, Zhu L et al (2012) Acquiring transgenic tobacco plants with insect resistance and glyphosate tolerance by fusion gene transformation. Plant Cell Rep 31(10):1877–1887

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Geletka LM, Nuss DL (2000) Essential and dispensable virus-encoded replication elements revealed by efforts to develop hypoviruses as gene expression vectors. J Virol 74(16):7568–7577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Nat Acad Sci 90(3):913–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tan MA, Hutten RC, Visser RG et al (2010) The effect of pyramiding Phytophthora infestans resistance genes R Pi-mcd1 and R Pi-ber in potato. Theor Appl Genet 121(1):117–125

    Google Scholar 

  • Tan H, Yang X, Zhang F et al (2011) Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol 156(3):1577–1588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang W, Chen H, Xu C et al (2006) Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Mol Breed 18(1):1–10

    Article  CAS  Google Scholar 

  • Tang G, Qin J, Dolnikowski GG et al (2009) Golden Rice is an effective source of vitamin A. Am J Clin Nutr 89(6):1776–1783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taverniers I, Papazova N, Bertheau Y et al (2008) Gene stacking in transgenic plants: towards compliance between definitions, terminology, and detection within the EU regulatory framework. Envir Biosaf Res 7(4):197–218

    Article  CAS  Google Scholar 

  • Tiwari VK, Wang S, Sehgal S et al (2014) SNP discovery for mapping alien introgressions in wheat. BMC Genomics. doi:10.1186/1471-2164-15-273

    Google Scholar 

  • Tyagi S, Mir RR, Kaur H et al (2014) Marker-assisted pyramiding of eight QTLs/genes for seven different traits in common wheat (Triticum aestivum L.). Mol Breed. doi:10.1007/s11032-014-0027-1

  • Wan B, Zha Z, Li J et al (2014) Development of elite rice restorer lines in the genetic background of R022 possessing tolerance to brown planthopper, stem borer, leaf folder and herbicide through marker-assisted breeding. Euphytica 195(1):129–142

    Article  CAS  Google Scholar 

  • Wei AY, He CM, Li B et al (2011) The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants. Plant Biotechnol J 9(2):216–229

    Article  CAS  PubMed  Google Scholar 

  • WHO (2009) Global prevalence of vitamin A deficiency in populations at risk 1995–2005. WHO global database on vitamin A deficiency. Geneva, World Health Organization, 2009. Available from: http://www.who.int/vmnis/vitamina/en/

  • Wu G, Truksa M, Datla N et al (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23(8):1013–1017

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Cheng Z, Yu W (2012a) Construction of rice mini-chromosomes by telomere-mediated chromosomal truncation. Plant J 70(6):1070–1079

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Liu X, Ge S et al (2012b) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30(1):105–111

    Article  CAS  Google Scholar 

  • Yang H, Tao Y, Zheng Z et al (2012) Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genomics. doi:10.1186/1471-2164-13-318

    Google Scholar 

  • Ye X, Al-Babili S, Klöti A et al (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451):303–305

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Lamb JC, Han F et al (2006) Telomere-mediated chromosomal truncation in maize. Proc Nat Acad Sci 103(46):17331–17336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu W, Han F, Gao Z (2007) Construction and behavior of engineered minichromosomes in maize. Proc Nat Acad Sci 104(21):8924–8929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhai J, Wang Y, Sun C (2013) A plant-transformation-competent BIBAC library of ginseng (Panax ginseng C. A. Meyer) for functional genomics research and characterization of genes involved in ginsenoside biosynthesis. Mol Breed 31(3):685–692

    Article  CAS  Google Scholar 

  • Zhang J, Martin JM, Beecher B et al (2010) The ectopic expression of the wheat Puroindoline genes increase germ size and seed oil content in transgenic corn. Plant Mol Biol 74(4–5):353–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao JZ, Cao J, Li Y et al (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21(12):1493–1497

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Naqvi S, Breitenbach J et al (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Nat Acad Sci 105(47):18232–18237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingliang Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wan, B. (2015). Transgenic Pyramiding for Crop Improvement. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, Cham. https://doi.org/10.1007/978-3-319-22521-0_13

Download citation

Publish with us

Policies and ethics