Skip to main content

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 10))

  • 1606 Accesses

Abstract

The advent of plants on land surfaces since about 420 million years-ago has created an interface between carbon-rich organic layers and an oxygen-rich atmosphere, inevitably leading to recurrent fires triggered by lightning, volcanic eruptions, high-temperature combustion of peat and, finally, ignition by humans, constituting the blueprint for the Anthropocene. According to Scott et al. (Fire on earth: an introduction. Wiley Blackwell, Oxford, 413 pp, 2014) (Fire on Earth: An introduction): “Earth is the only planet known to have fire. The reason is both simple and profound: fire exists because Earth is the only planet to possess life as we know it. Life created both the oxygen and the hydrocarbon fuel that combustion requires, it arranges these fuels according to processes of evolutionary selection and ecological dynamics and, in the form of humanity, it supplies the most abundant source of ignition. Fire is an expression of life on Earth and an index of life’s history. Few processes are as integral, unique, or ancient”. Since the mastery of fire by humans some 2 million years ago, and in particular the onset of the Neolithic, cultivation and agriculture-based civilizations, concentrating along rivers or above groundwater reservoirs, applied large-scale burning, with major effects on the atmosphere. Civilization, dependent on climate and water, including annual river rhythms, is founded on transformation of nature through its effects on forests, soil erosion and chemical contamination. For a species to be able to control ignition and energy output and entropy in nature higher by orders of magnitude than its own physical energy outputs, the species would need to be perfectly wise and responsible. No species can achieve such levels.

Orlando’s Vision

Strained wire-like fingers strum a guitar

White strings of pain take you afar

Blue visions tall angel by the gate

Leads down steps where fate awaits

A door swings brilliant light engulfs

A huge hall’s walls cryptic hieroglyphs

Bright ray beams flash pierce toward

A radiant core’s mortal reward

Where the eternal cosmic flame

Creates the life it shall reclaim.

(Andrew Glikson)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Hamad AMB, Jasper A, Uhl D (2012) The record of Triassic charcoal and other evidence for palaeo-wildfires: signal for atmospheric oxygen levels, taphonomic biases or lack of fuel? Int J Coal Geol 96–97:60–71

    Article  Google Scholar 

  • Adler J (2013) Why fire makes us Smithsonian Magazine, June 2013

    Google Scholar 

  • Ambrose SH (1998) Late Pleistocene human bottlenecks, volcanic winter, and differentiation of modern humans. J Hum Evol 34:623–651

    Article  Google Scholar 

  • Bar-Yosef O (2000) The middle and early upper Paleolithic in Southwest Asia and neighboring regions. In: Bar-Yosef O, Pilbeam D (eds) The geography of Neanderthals and modern humans in Europe and the greater Mediterranean. Peabody Museum Press, Cambridge, MA, pp 107–156

    Google Scholar 

  • Beerling DJ, Berner RA (2000) Impact of a Permo-Carboniferous high O2 event on the terrestrial carbon cycle. Proc Natl Acad Sci U S A 97:12428–12432

    Article  Google Scholar 

  • Belcher CN (2009) Re-igniting the cretaceous-paleogene firestorm debate. Geology 37:1147–1148

    Article  Google Scholar 

  • Belcher CM, Collinson ME, Sweet AR, Hildebrand AR, Scott AC (2003) “Fireball passes and nothing burns”—The role of thermal radiation in the K-T event: evidence from the charcoal record of North America. Geology 31:1061–1064

    Article  Google Scholar 

  • Belcher CM, Yearsley JM, Hadden RM, McElwain JC, Rein G (2010) Baseline intrinsic flammability of Earth’s ecosystems estimated from paleo-atmospheric oxygen over the past 350 million years. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1011974107

    Google Scholar 

  • Berna F, Goldberg P, Horwitz LK, Brink J, Holt S, Bamford M, Chazang M (2012) Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc Natl Acad Sci U S A 109(20):1–6

    Article  Google Scholar 

  • Berner RA (2009) Phanerozoic atmospheric oxygen new results using the GEOCARBSULF model. Am J Sci 309:603–606

    Article  Google Scholar 

  • Berner RA, Beerling DJ, Dudley R, Robinson JM, Wildman RA (2003) Phanerozoic atmospheric oxygen. Ann Rev Earth Planet Sci 31:105–134

    Article  Google Scholar 

  • Berner RA, Vanderbrook JM, Ward PD (2007) Oxygen and evolution. Science 316:557–558

    Article  Google Scholar 

  • Bodiselitsch B, Montanari A, Koeberl C, Coccioni R (2004) Delayed climate cooling in the late Eocene caused by multiple impacts: high-resolution geochemical studies at Massignano, Italy. Earth Planet Sci Lett 223:283–302

    Article  Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394

    Article  Google Scholar 

  • Bowman DM et al (2009) Fire in the Earth system. Science 324:481–484

    Article  Google Scholar 

  • Broecker WC, Stocker TF (2006) The Holocene CO2 rise: anthropogenic or natural? Eos 87:27–29

    Article  Google Scholar 

  • Brown P, Sutikna T, Morwood M et al (2004) A new small-bodied hominin from the late Pleistocene of flores, Indonesia. Nature 431:1055–1061

    Article  Google Scholar 

  • Brown S, Scott AC, Glasspool IJ, Collinson M (2012) Cretaceous wildfires and their impact on the Earth system. Cretac Res 36:162–190

    Article  Google Scholar 

  • Buckley BM, Anchukaitisa KJ, Penny D, Fletcher R, Cook ER, Sano M, Nam LC, Wichienkeeo A, Minh TT, Mai Hong T (2010) Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Natl Acad Sci U S A 107:6478–6752

    Article  Google Scholar 

  • Clendinnen I (1995) Aztecs: an interpretation. Cambridge University Press, Cambridge, 389 pp

    Google Scholar 

  • Clift PD et al (2007) Holocene erosion of the lesser himalaya triggered by intensified summer monsoon. Geology 36:79–82

    Article  Google Scholar 

  • Collinson ME, Steart DC, Scott AC, Glasspool IJ, Hooker JJ (2007) Episodic fire, runoff and deposition at the Palaeocene–Eocene boundary. J Geol Soc 164:87–97

    Article  Google Scholar 

  • Crane PR, Lidgard S (1989) Angiosperm diversification and paleolatitude gradients in cretaceous floristic diversity. Science 246(4930):675–678

    Article  Google Scholar 

  • Cullen HM, deMenocal PB, Hemming S et al (2000) Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology 28:379–382

    Article  Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, Oxford, 384 pp

    Google Scholar 

  • deMenocal PB (2001) Cultural responses to climate change during the late Holocene. Science 292:667–673

    Article  Google Scholar 

  • deMenocal PB (2004) African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet Sci Lett 220:3–24

    Article  Google Scholar 

  • Dennell RW, Roebroeks W (2005) Out of Africa: an Asian perspective on early human dispersal from Africa. Nature 438:1099–1104

    Article  Google Scholar 

  • Diamond J (2005) Collapse: how societies choose to fail or succeed. Viking, New York

    Google Scholar 

  • Dunbar RIM (1992) Neocortex size as a constraint on group size in primates. J Hum Evol 22:469–493

    Article  Google Scholar 

  • Dunbar RIM (1996) Grooming, gossip and the evolution of language. Faber and Faber, London, 219 pp

    Google Scholar 

  • Endicott P, Ho SYW, Stringer C (2010) Using genetic evidence to evaluate four palaeo-anthropological hypotheses for the timing of Neanderthal and modern human origins. J Hum Evol 59:87–95

    Article  Google Scholar 

  • Gammage B (2012) The biggest estate on earth: how aborigines made Australia. Allen and Unwin, Crows Nest, 384 pp

    Google Scholar 

  • Gathorne-Hardy FJ, Harcourt-Smith WEH (2003) The super-eruption of Toba, did it cause a human bottleneck? J Hum Evol 45:227–230

    Article  Google Scholar 

  • Glasspool IJ, Scott AC (2010) Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat Geosci 3:627–630

    Article  Google Scholar 

  • Global Carbon Project, Global Carbon Budget (2012) http://www.globalcarbonproject.org/carbonbudget/12/hl-full.htm

  • Goldin TJ, Melosh HJ (2009) Self-shielding of thermal radiation by Chicxulub impact ejecta: firestorm or fizzle? Geology 37:1135–1138

    Article  Google Scholar 

  • Goren-Inbar N, Alperson N, Kislev ME, Simchoni O, Melamed Y, Ben-Nun A, Werker E (2004) Evidence of Hominin control of fire at Gesher Benot Ya’aqov, Israel. Science 304:725–727

    Article  Google Scholar 

  • Griffin DR (1992) Animal minds. University of Chicago Press, Chicago

    Google Scholar 

  • Groves C (1993) Our earliest ancestors. In: Burenhult G (ed) The first humans: human origins and history to 10,000 BC. Harper-Collins Publishers, New York, pp 33–40, 42–45, 47–52

    Google Scholar 

  • Hansen JE, Sato M (2012a) Paleoclimate implications for human-made climate change. Clim Change 2012:21–47

    Article  Google Scholar 

  • Harris TM (1958) Forest fires in the Mesozoic. J Ecol 46:447–453

    Article  Google Scholar 

  • He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB (2012) Fire-adapted traits of Pinus arose in the fiery cretaceous. New Phytol 194:751–759

    Article  Google Scholar 

  • Henn BM, Cavalli-Sforza LL, Feldman MW (2012) The great human expansion. Proc Natl Acad Sci U S A 109:17758–17764

    Article  Google Scholar 

  • Henshilwood CS et al (2011) A 100,000-year-old ochre-processing workshop at Blombos Cave, South Africa. Science 334:219–222

    Article  Google Scholar 

  • Herring JR (1985) Charcoal flux into sediments of the North pacific ocean: the Cenozoic record of burning. IN: the carbon cycle and atmospheric CO2: natural variations Archaean to present. Geophy Monogr 32:419–442

    Google Scholar 

  • Hildebrand WS, Gilmour I, Anders E (1990) Major fires at the cretaceous-tertiary boundary. Geol Soc Am Spec Paper 247:391–400

    Article  Google Scholar 

  • Hoetzel S, Dupont L, Schefuß E, Rommerskirchen F, Wefer G (2013) The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nat Geosci 6:1027–1030

    Article  Google Scholar 

  • Hovers E, Kuhn S (2004) Transitions before the transition: evolution and stability in the middle Palaeolithic and middle Stone Age. Springer, New York, pp 171–188

    Google Scholar 

  • Hudspith V, Scott AC, Collinson ME, Pronina N, Beeley T (2012) Evaluating the extent to which wildfire history can be interpreted from inertinite distribution in coal pillars: an example from the Late Permian, Kuznetsk Basin, Russia. Int J Coal Geol 89:13–25

    Article  Google Scholar 

  • IPCC-AR4 (2007) Contriibution of working group I to the fourth assessment report of the intergovernmental panel of climate change. http://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html

  • Johnson C (2013) Hunting or climate change? Megafauna extinction debate narrows. http://theconversation.com/hunting-or-climate-change-megafauna-extinction-debate-narrows-10602#comment_156216

  • Jones PD, Osborn TJ, Briffa KR (2001) The evolution of climate over the last millennium. Science 292:662–667

    Article  Google Scholar 

  • Jones GS, Gregory JM, Stott PA, Tett SFB, Thorpe RB (2005) An AOGCM simulation of the climate response to a volcanic super-eruption. Climate Dynam 25:725–738

    Article  Google Scholar 

  • Jouzel J et al (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793–797

    Article  Google Scholar 

  • Kittel C, Kroemer H (1980) Thermal physics, 2nd edn. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Klein R (2009) The human career: human biological and cultural origins. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Klein RG, Edgar B (2002) The dawn of human culture. Wiley and Son, New York, 288 pp

    Google Scholar 

  • Koestler A (1986) Janus: a summing up. Picador Books, London

    Google Scholar 

  • Kohler E et al (2002) Hearing sounds, understanding actions: action representation in mirror neurons. Science 297:846–848

    Article  Google Scholar 

  • Kring DA, Durda DD (2002) Trajectories and distribution of material ejected from the chicxulub impact crater: implications for post impact wildfires. J Geophys Res 107:6–22

    Google Scholar 

  • Kutzbach JE, Ruddiman WF, Vavrus SJ, Philippon G (2010) Climate model simulation of anthropogenic influence on greenhouse-induced climate change (early agriculture to modern): the role of ocean feedbacks. Clim Change 99:351–381

    Article  Google Scholar 

  • Laris P (2002) Burning the seasonal mosaic: preventative burning strategies in the wooded savannah of Southern Mali. Hum Ecol 30:155–186

    Article  Google Scholar 

  • Lepre CJ et al (2011) An earlier origin for the Acheulian. Nature 477:82–85

    Article  Google Scholar 

  • Lewis CFM, Miller AAL, Levac E, Piper DJW, Sonnichsen GV (2012) Lake Agassiz outburst age and routing by labrador current and the 8.2 ka cold event. Quat Int 260:83–97

    Article  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Plio-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003. doi:10.1029/2004PA001071

    Google Scholar 

  • Marlon JR et al (2008) Climate and human influences on global biomass burning over the past two millennia. Nat Geosci 1:697–702

    Article  Google Scholar 

  • Marlon JR et al (2009) Wildfire responses to abrupt climate change in North America. Proc Natl Acad Sci U S A 106:2519–2524

    Article  Google Scholar 

  • Maslin MA, Christensen B (2007) Tectonics, orbital forcing, global climate change, and human evolution in Africa: introduction to the African paleoclimate special volume. J Hum Evol 53(5):443–464

    Article  Google Scholar 

  • Maslin MA, Trauth MH (2009) Plio-pleistocene East African pulsed climate variability and its influence on early human evolution. In: The first humans – origin and early evolution of the genus homo. Verteb Paleobiology Paleoanthropology, 151–158

    Google Scholar 

  • McBrearty S, Brooks AS (2000) The revolution that wasn’t: a new interpretation of the origin of modern human behaviour. J Hum Evol 39:453–563

    Article  Google Scholar 

  • McGlone MS, Wilmshurst J (1999) Dating initial Maori environmental impacts in New Zealand. J Q Sci 59:5–16

    Google Scholar 

  • McHenry HM (2009) Human Evolution. In: Ruse M, Travis J (eds) Evolution: the first four billion years. The Belknap Press of Harvard University Press, Cambridge, MA, 265 pp

    Google Scholar 

  • Melosh HJ, Schneider NM, Zahnle KJ, Latham D (1990) Ignition of global wild fires at the Cretaceous/tertiary boundary. Nature 343:251–254

    Article  Google Scholar 

  • Miguel CD, Henneberg M (2001) Variation in hominid brain size: how much is due to method? HOMO – J Comp Hum Biol 52:3–58

    Google Scholar 

  • Miller GH (2005) Ecosystem collapse in Pleistocene Australia and a human role in megafauna extinction. Science 309:287–90

    Article  Google Scholar 

  • Mithen SJ (2003) After the ice: a global human history, 20,000–5000 BC. Harvard University Press, Cambridge, MA, 2004. Weidenfeld & Nicolson, London

    Google Scholar 

  • Morris I (2011) Why the west rules for now: the patterns of history, and what they reveal about the future. Picador, New York

    Google Scholar 

  • Narby J (2005) Intelligence in nature. Penguin, New York

    Google Scholar 

  • Nichols GJ, Jones TP (1992) Fusain in carboniferous shallow marine sediments, Donegal, Ireland: the sedimentological effects of wildfire. Sedimentology 39:487–502

    Article  Google Scholar 

  • Niklas KJ, Tiffney BH, Knoll AH (1985) Patterns in vesicular plant diversification: an analysis at the species level. In: Valentine J (ed) Phanerozoic diversity patterns: profiles in macroevolution. Princeton Legacy Library, Princeton University Press, Princeton

    Google Scholar 

  • Patterson N, Richter DJ, Gnerre S, Lander ES, Reich D (2006) Genetic evidence for complex speciation of humans and chimpanzees. Nature 441:1103–1108

    Article  Google Scholar 

  • Petraglia M et al (2007) Middle paleolithic assemblages from the Indian subcontinent before and after the Toba super-eruption. Science 317:114–116

    Article  Google Scholar 

  • Power MJ (2013) A 21,000 history of fire. In: Belch CM (ed) Fire phenomena and the earth system: an interdisciplinary guide to fire science. Willey and Sons, Manchester, pp 207–227

    Chapter  Google Scholar 

  • Power MJ, Marlon J, Cannon SH (2008) Changes in fire regimes since the last glacial maximum: an assessment based on global synthesis and analysis of charcoal data. Climate Dynam 30:887–907

    Article  Google Scholar 

  • Ramachandran VS (2000) Mirror neurons and imitation learning as the driving force behind “the great leap forward” in human evolution http://edge.org/3rd_culture/ramachandran/ramachandran_index.html

  • Rampino MR, Self S (1993) Climate-volcanism feedback and the Toba eruption of ~74,000 years-ago. Quat Res 40:269–280

    Article  Google Scholar 

  • Robinson JM (1989) Phanerozoic O2 variation, fire and terrestrial ecology. Palaeogeogr Palaeoclimatol Palaeoecol 75:223–240

    Article  Google Scholar 

  • Roebroeks W, Villa P (2011) On the earliest evidence for habitual use of fire in Europe. Proc Natl Acad Sci U S A 108:5209–5214

    Article  Google Scholar 

  • Ruddiman WF (2003) Orbital insolation, ice volume, and greenhouse gases. Quat Sci Rev 22:1597–1629

    Article  Google Scholar 

  • Scott AC, Glasspool IJ (2006) The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc Natl Acad Sci U S A 103:10861–10865

    Article  Google Scholar 

  • Scott AC, Kenig F, Plotnick RE, Glasspool IJ, Chaloner WG, Eble CF (2010) Evidence of multiple late Bashkirian to early Moscovian (Pennsylvanian) fire events preserved in contemporaneous cave fills. Palaeogeogr Palaeoclimatol Palaeoecol 291:72–84

    Article  Google Scholar 

  • Scott AC, Bowman DMJS, Bond WJ, Pyne SJ, Alexander ME (2014) Fire on earth: an introduction. Wiley Blackwell, Oxford, 413 pp

    Google Scholar 

  • Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–55

    Article  Google Scholar 

  • Shen H (2012) Drought-hastened Maya decline: a prolongued dry period contributed to civilization collapse. Nature. http://www.nature.com/news/drought-hastened-maya-decline-1-11780. Accessed 05 Jan 2013

  • Sheuyangea A, Oba G, Weladji RB (2005) Effects of anthropogenic fire history on savannah vegetation in Northeastern Namibia. J Environ Manag 75:189–198

    Article  Google Scholar 

  • Smithsonian Institute (2012) What does it mean to be human? http://humanorigins.si.edu/research/asian-research/hobbits; http://humanorigins.si.edu/research/asian-research/earliest-humans-china

  • Solanki SK (2002) Solar variability and climate change: is there a link? A&G (2002) 43(5):5.9–5.13. doi:10.1046/j.1468-4004.2002.43509.x http://astrogeo.oxfordjournals.org/content/43/5/5.9.abstract http://astrogeo.oxfordjournals.org/content/43/5/5.9.full.pdf+html

  • Steffen W, Crutzen PJ, McNeill JR (2007) The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36:614–621

    Article  Google Scholar 

  • Steffensen JP et al (2008) High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321:680–684

    Article  Google Scholar 

  • Stephens SL, Martin RE, Clinton NE (2007) Prehistoric fire area and emissions from California’s forests, woodlands, shrub lands and grasslands. For Ecol Manag 251:205–216

    Article  Google Scholar 

  • Stevens JR (1989) Hominid use of fire in the Lower and Middle Pleistocene: a review of the evidence. Curr Anthropol Uni Chicago Press 30:1–26

    Google Scholar 

  • Stewart JR, Stringer CB (2012) Human evolution out of Africa: the role of Refugia. Clim Change Sci 335:1317–1321

    Google Scholar 

  • Storey M, Roberts RG, Saidin M (2012) Astronomically calibrated 40Ar/39Ar age for the Toba super-eruption and global synchronization of late quaternary records. Proc Natl Acad Sci 109:18684–18688

    Article  Google Scholar 

  • Surovell TA, Grund BS (2012) The associational critique of quaternary overkill and why it is largely irrelevant to the extinction debate. Am Antiq 77(4):672–687

    Article  Google Scholar 

  • Timmreck C et al (2012) Climate response to the Toba super-eruption: regional changes. Quat Int 258:30–44

    Article  Google Scholar 

  • Trauth MH, Maslin MA, Deino AL, Strecker MR, Bergner AGN, Duhnforth M (2007) High- and low-latitude forcing of Plio-Pleistocene East African climate and human evolution. J Hum Evol 53:475–486

    Article  Google Scholar 

  • Twomey T (2011) Keping fire: the cognitive implications of controlled fire use by middle pleistocene humans. University of Melbourne. http://unimelb.academia.edu/TerrenceTwomey

  • Wagner F, Aaby B, Visscher H (2002) Rapid atmospheric CO2 changes associated with the 8,200-years-B.P. cooling event. Proc Natl Acad Sci U S A 99:12011–12014

    Article  Google Scholar 

  • Ward PD (2007) Under a green sky: global warming, the mass extinctions of the past, and what they can tell us about our future. Harper Collins, New York, 242 pp

    Google Scholar 

  • Watson A, Lovelock JE, Margulis L (1978) Methanogenesis, fires and the regulation of atmospheric oxygen. Biosystems 10:293–298

    Article  Google Scholar 

  • Weiss H et al (1993) The genesis and collapse of third millennium north Mesopotamian civilization. Science 261:995–1004

    Article  Google Scholar 

  • Wiersma AP, Roche DM, Renssen H (2011) Fingerprinting the 8.2 ka event climate response in a coupled climate model. J Q Sci 26:118–125

    Article  Google Scholar 

  • Wolbach SW, Widicus S, Moecker S (1990) Is the soot layer at the KT boundary really global? Lunar and Planetary Science XXIX 1309

    Google Scholar 

  • Wood F (2008) China’s first emperor and his terracotta warriors. Macmillan Publishing, New York

    Google Scholar 

  • Wrangham R (2009) Catching fire: how cooking made us human. Basic Books, New York, 320 pp

    Google Scholar 

  • Zachos J, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    Article  Google Scholar 

  • Zimmer C (2005) Smithsonian intimate guide to human origins. Madison Press Books, Totonto, 176 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glikson, A.Y., Groves, C. (2016). Fire and the Biosphere. In: Climate, Fire and Human Evolution. Modern Approaches in Solid Earth Sciences, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-22512-8_4

Download citation

Publish with us

Policies and ethics