Skip to main content

Convergence of Functions

  • Chapter
Book cover Essentials of Measure Theory
  • 3302 Accesses

Abstract

Major convergence concepts for sequences of real-valued functions will be considered in this chapter. We have already met four convergence concepts so far (viz., pointwise, uniform, almost everywhere, and convergence in L p). These are reviewed and compared in this section. Further concepts, namely, convergence in measure, uniform almost everywhere, and almost uniform convergence, will be discussed and compared in subsequent sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Abbott, Understanding Analysis, Springer, New York, 2001.

    Google Scholar 

  2. E. Asplund and L. Bungart, A First Course in Integration, Holt, Rinehart and Winston, New York, 1966.

    Google Scholar 

  3. R.G. Bartle, The Elements of Real Analysis, 2nd ed., Wiley, New York, 1976.

    Google Scholar 

  4. R.G. Bartle, The Elements of Integration and Lebesgue Measure, Wiley, New York, 1995; enlarged 2nd ed. of The Elements of Integration, Wiley, New York, 1966.

    Google Scholar 

  5. R.G. Bartle, A Modern Theory of Integration, Graduate Studies in Mathematics, Vol. 32, Amer. Math. Soc., Providence, 2001.

    Google Scholar 

  6. H. Bauer, Measure and Integration Theory, Walter de Gruyter, Berlin, 2001.

    Google Scholar 

  7. S.K. Berberian, Measure and Integration, Chelsea, New York, 1965.

    Google Scholar 

  8. A. Brown and C. Pearcy, Introduction to Operator Theory I: Elements of Functional Analysis, Springer, New York, 1977.

    Google Scholar 

  9. A. Brown and C. Pearcy, An Introduction to Analysis, Springer, New York, 1995.

    Google Scholar 

  10. D.L. Cohn, Measure Theory, 2nd ed., Birkhäuser-Springer, New York, 2013.

    Google Scholar 

  11. J.B. Conway, A Course in Abstract Analysis, Graduate Studies in Mathematics, Vol. 141, Amer. Math. Soc., Providence, 2012.

    Google Scholar 

  12. J. Dugundji, Topology, Allyn & Bacon, Boston, 1966.

    Google Scholar 

  13. N. Dunford and J.T. Schwartz, Linear Operators – Part I: General Theory, Interscience, New York, 1958.

    Google Scholar 

  14. K.J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  15. K.J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 3rd ed., Wiley, Chichester, 2014.

    Google Scholar 

  16. G.B. Folland, Real Analysis: Modern Techniques and their Applications, 2nd ed., Wiley, New York, 1999.

    Google Scholar 

  17. C. ​Goffman and G. ​Pedrick, First Course in Functional Analysis, Prentice-Hall, Englewood Cliffs, 1965.

    Google Scholar 

  18. P.R. Halmos, Measure Theory, Van Nostrand, New York, 1950; reprinted: Springer, New York, 1974.

    Google Scholar 

  19. P.R. Halmos, Naive Set Theory, Van Nostrand, New York, 1960; reprinted: Springer, New York, 1974.

    Google Scholar 

  20. P.R. Halmos, A Hilbert Space Problem Book, Van Nostrand, New York, 1967; 2nd ed., Springer, New York, 1982.

    Google Scholar 

  21. J.L. Kelley, General Topology, Van Nostrand, New York, 1955; reprinted: Springer, New York, 1975.

    Google Scholar 

  22. J.L. Kelley and T.P. Srinivasan, Measure and Integral – Volume 1, Springer, New York, 1988.

    Google Scholar 

  23. J.F.C. Kingman and S.J. Taylor, Introduction to Measure and Probability, Cambridge University Press, Cambridge, 1966.

    Google Scholar 

  24. A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis, Prentice-Hall, Englewood Cliffs, 1970.

    Google Scholar 

  25. C.S. Kubrusly, Measure Theory: A First Course, Academic Press-Elsevier, San Diego, 2007.

    Google Scholar 

  26. C.S. Kubrusly, The Elements of Operator Theory, Birkhäuser-Springer, New York, 2011; enlarged 2nd ed. of Elements of Operator Theory, Birkhäuser, Boston, 2001.

    Google Scholar 

  27. C.S. Kubrusly, Spectral Theory of Operators on Hilbert Spaces, Birkhäuser-Springer, New York, 2012.

    Google Scholar 

  28. S. Lang, Real and Functional Analysis, 3rd ed., Springer, New York, 1993.

    Google Scholar 

  29. J.N. McDonald and N.A. Weiss, A Course in Real Analysis, Academic Press, San Diego, 1999.

    Google Scholar 

  30. M.E. Munroe, Measure and Integration, 2nd ed., Addison-Wesley, Reading, 1971.

    Google Scholar 

  31. L. Nachbin, The Haar Integral, Van Nostrand, New York, 1965.

    Google Scholar 

  32. M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, 2nd ed., Academic Press, New York, 1980.

    Google Scholar 

  33. F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar, New York, 1955.

    Google Scholar 

  34. C.A. Rogers, The Hausdorff Measure, Cambridge University Press, Cambridge, 1970.

    Google Scholar 

  35. H.L. Royden, Real Analysis, 3rd ed., Macmillan, New York, 1988.

    Google Scholar 

  36. W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.

    Google Scholar 

  37. H. Sagan, Space-Filling Curves, Springer, New York, 1994.

    Google Scholar 

  38. G.E. Shilov and B.L. Gurevich, Integral, Measure and Derivative: A Unified Approach, Prentice-Hall, Englewood Cliffs, 1966.

    Google Scholar 

  39. P. Suppes, Axiomatic Set Theory, Van Nostrand, New York, 1960.

    Google Scholar 

  40. R.L. Vaught, Set Theory: An Introduction, 2nd ed., Birkhäuser, Boston, 1995.

    Google Scholar 

  41. A.J. Weir, Lebesgue Integration and Measure, Cambridge University Press, Cambridge, 1973.

    Google Scholar 

  42. A.J. Weir, General Integration and Measure, Cambridge University Press, Cambridge, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kubrusly, C.S. (2015). Convergence of Functions. In: Essentials of Measure Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-22506-7_6

Download citation

Publish with us

Policies and ethics