Advertisement

Hysterectomy pp 109-123 | Cite as

Radio-Imaging for Malignant Uterine Disease

  • Céline D. Alt-RadkeEmail author
Chapter
  • 694 Downloads

Abstract

Clinical examination and ultrasound are mostly sufficient for diagnosis of gynecological diseases. Cross sectional imaging (CT and MRI) of the female pelvis is essential in those cases where a clinical examination or ultrasound may not clearly allow a definite diagnosis of uterine disease, if clarification of possible differential diagnosis of a uterine lesion is needed, or for optimal local treatment planning. An overall imaging of the body or chest is essential for complete staging in malignancy before treatment planning (Colombo et al., Ann Oncol 23(Suppl 7): 27–32, 2012; Colombo et al., Ann Oncol 24 (Suppl 6):33–38, 2013; Kinkel et al., Eur Radiol 19:1565–1574, 2009; Leitlinienprogramm, Onkologie. S3-Leitlinie Diagnostik, Therapie und Nachsorge der Patientin mit Zervixkarzinom. Kurzversion 1.0, AWMF Registernummer 032/033OL, 2014; Querleu et al., Int J Gynecol Cancer 21:945–950, 2011).

The prognosis for women with gynecologic malignancies, e.g., cervical or endometrial cancer or uterine sarcomas, not only depends on local tumor spread but also on a wide range of additional findings. These include positive lymph nodes, ascites or distant metastases. CT and MRI have increasingly been used for optimal treatment planning in gynecologic malignancies. Their staging criteria are based on the current FIGO staging system and the TNM classification system (Pecorelli, Int J Gynaecol Obstet 105:103–104, 2009; Sobin and Compton, Cancer 116:5336–5339, 2010).

Magnetic Resonance Imaging (MRI) is a perfect tool for the evaluation of the morphology of the entire female pelvis due to its high-resolution images combined with an excellent soft tissue contrast and without the application of radiation, and should be given preference for imaging of the female pelvic organs. Even without intravenous contrast media, many diagnoses could be made or even differential diagnoses could be excluded. Additionally, contrast enhanced MRI is superior to CT for differentiation of recurrent tumor and radiation fibrosis. However, patients with pacemakers, or non-MRI-safe implants, cannot be examined with MRI due to its magnetic field strength.

Computed Tomography (CT) has a lower soft tissue contrast than MRI and gives notable radiation exposure to the patient. In gynecology, CT plays an important role for radiation therapy planning and re-evaluation after treatment, as well as for the detection of distant metastases (Brocker et al., Strahlenther Onkol 187:611–618, 2011; Colombo et al., Crit Rev Oncol Hematol 60:159–179, 2011).

Positron-Emissions-Tomography (PET) is a molecular imaging technique, which commonly uses the isotope 18F-Fluordeoxyglucose (18F-FDG) for oncologic imaging to detect tissues with abnormally high glucose uptake, such as tumors (Pano et al., Radiographics 31:135–160, 2011; Grigsby, Curr Opin Oncol 21:420–424, 2009).

PET is often combined with CT, and nowadays with MRI, to combine both the molecular imaging technique and the morphological information. PET/CT has benefits in the diagnosis of tumor recurrence, in the detection of occult metastases, and in the differentiation between scar tissue and recurrence in severe cases (Brocker et al., Strahlenther Onkol 187:611–618, 2011; De Gaetano et al., Abdom Imaging 34:696–711, 2009).

Keywords

Endometrial cancer Cervical cancer Uterine sarcoma Lymphoma Recurrence 

References

  1. 1.
    Kinkel K, Forstner R, Danza FM, et al. Staging of endometrial cancer with MRI: guidelines of the European Society of Urogenital Imaging. Eur Radiol. 2009;19:1565–74.CrossRefPubMedGoogle Scholar
  2. 2.
    Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol Obstet. 2009;105:103–4.CrossRefPubMedGoogle Scholar
  3. 3.
    Brocker KA, Alt CD, Eichbaum M, et al. Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT: part 1. Strahlenther Onkol. 2011;187:611–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Colombo N, Van Gorp T, Parma G, et al. Ovarian cancer. Crit Rev Oncol Hematol. 2006;60:159–79.CrossRefPubMedGoogle Scholar
  5. 5.
    Pano B, Sebastia C, Bunesch L, et al. Pathways of lymphatic spread in male urogenital pelvic malignancies. Radiographics. 2011;31:135–60.CrossRefPubMedGoogle Scholar
  6. 6.
    Balleyguier C, Sala E, Da Cunha T, et al. Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology. Eur Radiol. 2011;21:1102–10.CrossRefPubMedGoogle Scholar
  7. 7.
    Kirchhoff S. MR Vagina, Uterus, Adnexe. In: Scheffel H, Alkadhi H, Boss A, Merkle E, editors. Praxisbuch MRT Abdomen und Becken. Berlin: Springer; 2012. p. 181–94.CrossRefGoogle Scholar
  8. 8.
    Thomassin-Naggara I, Darai E, Bazot M. Gynecological pelvic infection: what is the role of imaging? Diagn Interv Imaging. 2012;93:491–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Sala E, Rockall AG, Freeman SJ, et al. The added role of MR imaging in treatment stratification of patients with gynecologic malignancies: what the radiologist needs to know. Radiology. 2013;266:717–40.CrossRefPubMedGoogle Scholar
  10. 10.
    Beddy P, Moyle P, Kataoka M, et al. Evaluation of depth of myometrial invasion and overall staging in endometrial cancer: comparison of diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology. 2012;262:530–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Forstner R, Sala E, Kinkel K, et al. ESUR guidelines: ovarian cancer staging and follow-up. Eur Radiol. 2010;20:2773–80.CrossRefPubMedGoogle Scholar
  12. 12.
    Shen SH, Chiou YY, Wang JH, et al. Diffusion-weighted single-shot echo-planar imaging with parallel technique in assessment of endometrial cancer. AJR Am J Roentgenol. 2008;190:481–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Scheidler J. Bildgebende Diagnostik der inneren weiblichen Genitalorgane – Adnexe. In: Adams S, Nicolas V, Freyschmidt J, editors. Urogenitaltrakt, Retroperitoneum, Mamma. Berlin/Heidelberg: Springer; 2004. p. 221–40.Google Scholar
  14. 14.
    Horton KM, Sheth S, Corl F, et al. Multidetector row CT: principles and clinical applications. Crit Rev Comput Tomogr. 2002;43:143–81.PubMedGoogle Scholar
  15. 15.
    Sala E, Hricak H. Female pelvis. In: Reiser MFHH, Semmler W, editors. Magnetic Resonance Tomography. Berlin/Heidelberg: Springer; 2008. p. 964–97.Google Scholar
  16. 16.
    Wittekind C, Meyer H-J. International Union against Cancer. TNM Klassifikation maligner Tumoren. 7. Aufl. Weinheim: Wiley-Blackwell; 2010.Google Scholar
  17. 17.
    Brant W. Pelvis. In: Webb W, Brant W, Major N, editors. Fundamentals of Body CT. Philadelphia: Saunders; 2006. p. 355–76.CrossRefGoogle Scholar
  18. 18.
    Naganawa S, Sato C, Kumada H, et al. Apparent diffusion coefficient in cervical cancer of the uterus: comparison with the normal uterine cervix. Eur Radiol. 2005;15:71–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Zaspel U, Hamm B. Cervical cancer. In: Hamm B, Forstner R, editors. MRI and CT of the female pelvis. Berlin/Heidelberg: Springer; 2007. p. 121–80.CrossRefGoogle Scholar
  20. 20.
    Sala E, Wakely S, Senior E, et al. MRI of malignant neoplasms of the uterine corpus and cervix. AJR Am J Roentgenol. 2007;188:1577–87.CrossRefPubMedGoogle Scholar
  21. 21.
    Rigon G, Vallone C, Starita A, et al. Diagnostic accuracy of MRI in primary cervical cancer. Open J Radiol. 2012;2:14–21.CrossRefGoogle Scholar
  22. 22.
    Pandharipande PV, Choy G, del Carmen MG, et al. MRI and PET/CT for triaging stage IB clinically operable cervical cancer to appropriate therapy: decision analysis to assess patient outcomes. AJR Am J Roentgenol. 2009;192:802–14.CrossRefPubMedGoogle Scholar
  23. 23.
    Kortmann B, Reimer T, Gerber B, et al. Concurrent radiochemotherapy of locally recurrent or advanced sarcomas of the uterus. Strahlenther Onkol. 2006;182:318–24.CrossRefPubMedGoogle Scholar
  24. 24.
    Benz MR, Tchekmedyian N, Eilber FC, et al. Utilization of positron emission tomography in the management of patients with sarcoma. Curr Opin Oncol. 2009;21:345–51.CrossRefPubMedGoogle Scholar
  25. 25.
    Roth CG. Magnetic resonance imaging of the female pelvis. Fundamentals of body MRI. Philadelphia: Elsevier Saunders; 2012. p. 261–368.Google Scholar
  26. 26.
    Sumi A, Terasaki H, Sanada S, et al. Assessment of MR imaging as a tool to differentiate between the major histological types of uterine sarcomas. Magn Reson Med Sci. 2015;14(4):295–304.CrossRefPubMedGoogle Scholar
  27. 27.
    Nucci MR, Oliva E. Gynecologic pathology. Edinburgh: Churchill Livingstone; 2009.Google Scholar
  28. 28.
    Takeuchi M, Matsuzaki K, Yoshida S, et al. Adenosarcoma of the uterus: magnetic resonance imaging characteristics. Clin Imaging. 2009;33:244–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Griffin N, Grant LA, Sala E. Magnetic resonance imaging of vaginal and vulval pathology. Eur Radiol. 2008;18:1269–80.CrossRefPubMedGoogle Scholar
  30. 30.
    Tateishi U, Terauchi T, Inoue T, et al. Nodal status of malignant lymphoma in pelvic and retroperitoneal lymphatic pathways: PET/CT. Abdom Imaging. 2010;35:232–40.CrossRefPubMedGoogle Scholar
  31. 31.
    Kim YS, Koh BH, Cho OK, et al. MR imaging of primary uterine lymphoma. Abdom Imaging. 1997;22:441–4.CrossRefPubMedGoogle Scholar
  32. 32.
    Jonat W, Bauerschlag D, Schem C, et al. Gut- und bösartige gynäkologische Tumoren. In: Diedrich K, Holzgreve W, Jonat W, Schneider K-T, Schultze-Mosgau A, Weiss J, editors. Gynäkologie und Geburtshilfe. Berlin/Heidelberg: Springer; 2007. p. 211–98.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2018

Authors and Affiliations

  1. 1.Department of Diagnostic and Interventional RadiologyMedical Faculty, University DuesseldorfDuesseldorfGermany

Personalised recommendations