Etiologies of Primary Ovarian Insufficiency

  • Nastaran Foyouzi
  • Lisa J. Green
  • Sally A. CamperEmail author


Primary ovarian insufficiency (POI) is a subclass of ovarian dysfunction in which the resting pool of primordial follicles is prematurely exhausted. It occurs through two major mechanisms: a pathologic process that causes follicle dysfunction or development of an inadequate initial pool of primordial follicles during embryogenesis. POI is a heterogeneous disease with variety of causes including genetic defects, autoimmunity, environmental factors, metabolic problems, and iatrogenic causes such as surgery, radiation, or chemotherapy. In over 90 % of cases the precise cause is unknown. In this chapter, we discuss the causes of POI to convey an understanding of disease pathophysiology.


Premature ovarian failure Primary ovarian insufficiency Embryogenesis Autoimmunity Genetics 


  1. 1.
    Kato I, et al. Prospective study of factors influencing the onset of natural menopause. J Clin Epidemiol. 1998;51(12):1271–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Gold EB, et al. Factors related to age at natural menopause: longitudinal analyses from SWAN. Am J Epidemiol. 2013;178(1):70–83.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Nelson LM. Clinical practice. Primary ovarian insufficiency. N Engl J Med. 2009;360(6):606–14.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Motta PM, Makabe S. Elimination of germ cells during differentiation of the human ovary: an electron microscopic study. Eur J Obstet Gynecol Reprod Biol. 1986;22(5-6):271–86.PubMedCrossRefGoogle Scholar
  5. 5.
    Motta PM, Makabe S. Germ cells in the ovarian surface during fetal development in humans. A three-dimensional microanatomical study by scanning and transmission electron microscopy. J Submicrosc Cytol. 1986;18(2):271–90.PubMedGoogle Scholar
  6. 6.
    McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21(2):200–14.PubMedGoogle Scholar
  7. 7.
    Goswami D, Conway GS. Premature ovarian failure. Hum Reprod Update. 2005;11(4):391–410.PubMedCrossRefGoogle Scholar
  8. 8.
    Zinn AR, Page DC, Fisher EM. Turner syndrome: the case of the missing sex chromosome. Trends Genet. 1993;9(3):90–3.PubMedCrossRefGoogle Scholar
  9. 9.
    Zinn AR, et al. Evidence for a Turner syndrome locus or loci at Xp11.2-p22.1. Am J Hum Genet. 1998;63(6):1757–66.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Zinn AR. The X chromosome and the ovary. J Soc Gynecol Investig. 2001;8(1 Suppl Proceedings):S34–6.PubMedCrossRefGoogle Scholar
  11. 11.
    van Kasteren YM, et al. Familial idiopathic premature ovarian failure: an overrated and underestimated genetic disease? Hum Reprod. 1999;14(10):2455–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Starup J, Sele V. Premature ovarian failure. Acta Obstet Gynecol Scand. 1973;52(3):259–68.PubMedCrossRefGoogle Scholar
  13. 13.
    Conway GS, et al. Characterization of idiopathic premature ovarian failure. Fertil Steril. 1996;65(2):337–41.PubMedGoogle Scholar
  14. 14.
    Torgerson DJ, Thomas RE, Reid DM. Mothers and daughters menopausal ages: is there a link? Eur J Obstet Gynecol Reprod Biol. 1997;74(1):63–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Cramer DW, Xu H, Harlow BL. Family history as a predictor of early menopause. Fertil Steril. 1995;64(4):740–5.PubMedGoogle Scholar
  16. 16.
    Vegetti W, et al. Inheritance in idiopathic premature ovarian failure: analysis of 71 cases. Hum Reprod. 1998;13(7):1796–800.PubMedCrossRefGoogle Scholar
  17. 17.
    van Asselt KM, et al. Heritability of menopausal age in mothers and daughters. Fertil Steril. 2004;82(5):1348–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Janse F, et al. Similar phenotype characteristics comparing familial and sporadic premature ovarian failure. Menopause. 2010;17(4):758–65.PubMedGoogle Scholar
  19. 19.
    Murabito JM, et al. Heritability of age at natural menopause in the Framingham Heart Study. J Clin Endocrinol Metab. 2005;90(6):3427–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Murabito JM, et al. Genome-wide linkage analysis to age at natural menopause in a community-based sample: the Framingham Heart Study. Fertil Steril. 2005;84(6):1674–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Loughlin SA, et al. Analysis of the origin of Turner's syndrome using polymorphic DNA probes. J Med Genet. 1991;28(3):156–8.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hughesdon PE. Ovarian pathology in primary amenorrhoea. Proc R Soc Med. 1970;63(3):294–7.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Sybert VP, McCauley E. Turner's syndrome. N Engl J Med. 2004;351(12):1227–38.PubMedCrossRefGoogle Scholar
  24. 24.
    Lyon MF. The X inactivation centre and X chromosome imprinting. Eur J Hum Genet. 1994;2(4):255–61.PubMedGoogle Scholar
  25. 25.
    Zinn AR, Ross JL. Turner syndrome and haploinsufficiency. Curr Opin Genet Dev. 1998;8(3):322–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Goldman B, et al. Clinical and cytogenetic aspects of X-chromosome deletions. Clin Genet. 1982;21(1):36–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Simpson JL, Rajkovic A. Ovarian differentiation and gonadal failure. Am J Med Genet. 1999;89(4):186–200.PubMedCrossRefGoogle Scholar
  28. 28.
    Trunca C, Therman E, Rosenwaks Z. The phenotypic effects of small, distal Xq deletions. Hum Genet. 1984;68(1):87–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Beke A, et al. Molecular cytogenetic analysis of Xq critical regions in premature ovarian failure. Mol Cytogenet. 2013;6(1):62.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Kalousek D, et al. Partial short arm deletions of the X chromosome and spontaneous pubertal development in girls with short stature. J Pediatr. 1979;94(6):891–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Jacobs PA. The role of chromosome abnormalities in reproductive failure. Reprod Nutr Dev. 1990; Suppl 1: 63s–74s.Google Scholar
  32. 32.
    Temtamy SA, et al. Karyotype/phenotype correlation in females with short stature. Clin Genet. 1992;41(3):147–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Ogata T, Matsuo N. Turner syndrome and female sex chromosome aberrations: deduction of the principal factors involved in the development of clinical features. Hum Genet. 1995;95(6):607–29.PubMedCrossRefGoogle Scholar
  34. 34.
    Persani L, et al. Primary Ovarian Insufficiency: X chromosome defects and autoimmunity. J Autoimmun. 2009;33(1):35–41.PubMedCrossRefGoogle Scholar
  35. 35.
    Cordts EB, et al. Genetic aspects of premature ovarian failure: a literature review. Arch Gynecol Obstet. 2011;283(3):635–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Christin-Maitre S, et al. Genes and premature ovarian failure. Mol Cell Endocrinol. 1998;145(1-2):75–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Coulam CB, Stringfellow S, Hoefnagel D. Evidence for a genetic factor in the etiology of premature ovarian failure. Fertil Steril. 1983;40(5):693–5.PubMedGoogle Scholar
  38. 38.
    Davis CJ, et al. Female sex preponderance for idiopathic familial premature ovarian failure suggests an X chromosome defect: opinion. Hum Reprod. 2000;15(11):2418–22.PubMedCrossRefGoogle Scholar
  39. 39.
    Mattison DR, et al. Familial premature ovarian failure. Am J Hum Genet. 1984;36(6):1341–8.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Rossetti R, et al. BMP15 mutations associated with primary ovarian insufficiency cause a defective production of bioactive protein. Hum Mutat. 2009;30(5):804–10.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Laissue P, et al. Recent advances in the study of genes involved in non-syndromic premature ovarian failure. Mol Cell Endocrinol. 2008;282(1-2):101–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Skillern A, Rajkovic A. Recent developments in identifying genetic determinants of premature ovarian failure. Sex Dev. 2008;2(4-5):228–43.PubMedCrossRefGoogle Scholar
  43. 43.
    Simpson JL. Genetic and phenotypic heterogeneity in ovarian failure: overview of selected candidate genes. Ann N Y Acad Sci. 2008;1135:146–54.PubMedCrossRefGoogle Scholar
  44. 44.
    Lourenco D, et al. Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med. 2009;360(12):1200–10.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Harris SE, et al. Identification of novel mutations in FOXL2 associated with premature ovarian failure. Mol Hum Reprod. 2002;8(8):729–33.PubMedCrossRefGoogle Scholar
  46. 46.
    Lamberts SW, Uitterlinden AG. Genetic testing in clinical practice. Annu Rev Med. 2009;60:431–42.PubMedCrossRefGoogle Scholar
  47. 47.
    Cronister A, et al. Mental impairment in cytogenetically positive fragile X females. Am J Med Genet. 1991;38(2-3):503–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Schwartz CE, et al. Obstetrical and gynecological complications in fragile X carriers: a multicenter study. Am J Med Genet. 1994;51(4):400–2.PubMedCrossRefGoogle Scholar
  49. 49.
    Murray A, et al. Studies of FRAXA and FRAXE in women with premature ovarian failure. J Med Genet. 1998;35(8):637–40.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Martin JR, Arici A. Fragile X and reproduction. Curr Opin Obstet Gynecol. 2008;20(3):216–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Verkerk AJ, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell. 1991;65(5):905–14.PubMedCrossRefGoogle Scholar
  52. 52.
    Sutcliffe JS, et al. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet. 1992;1(6):397–400.PubMedCrossRefGoogle Scholar
  53. 53.
    Feng Y, et al. Translational suppression by trinucleotide repeat expansion at FMR1. Science. 1995;268(5211):731–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Feng Y, et al. Quantitative comparison of FMR1 gene expression in normal and premutation alleles. Am J Hum Genet. 1995;56(1):106–13.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Wittenberger MD, et al. The FMR1 premutation and reproduction. Fertil Steril. 2007;87(3):456–65.PubMedCrossRefGoogle Scholar
  56. 56.
    Conway GS, et al. Fragile X premutation screening in women with premature ovarian failure. Hum Reprod. 1998;13(5):1184–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Allingham-Hawkins DJ, et al. Fragile X premutation is a significant risk factor for premature ovarian failure: the International Collaborative POF in Fragile X study--preliminary data. Am J Med Genet. 1999;83(4):322–5.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Greco CM, et al. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain. 2006;129(Pt 1):243–55.PubMedGoogle Scholar
  59. 59.
    Allen EG, et al. Examination of reproductive aging milestones among women who carry the FMR1 premutation. Hum Reprod. 2007;22(8):2142–52.PubMedCrossRefGoogle Scholar
  60. 60.
    Hagerman RJ, et al. Fragile-X-associated tremor/ataxia syndrome (FXTAS) in females with the FMR1 premutation. Am J Hum Genet. 2004;74(5):1051–6.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Fu YH, et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell. 1991;67(6):1047–58.PubMedCrossRefGoogle Scholar
  62. 62.
    Oberle I, et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science. 1991;252(5009):1097–102.PubMedCrossRefGoogle Scholar
  63. 63.
    Reyniers E, et al. The full mutation in the FMR-1 gene of male fragile X patients is absent in their sperm. Nat Genet. 1993;4(2):143–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Malter HE, et al. Characterization of the full fragile X syndrome mutation in fetal gametes. Nat Genet. 1997;15(2):165–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Kenneson A, Warren ST. The female and the fragile X reviewed. Semin Reprod Med. 2001;19(2):159–65.PubMedCrossRefGoogle Scholar
  66. 66.
    Bakalov VK, et al. Autoimmune oophoritis as a mechanism of follicular dysfunction in women with 46, XX spontaneous premature ovarian failure. Fertil Steril. 2005;84(4):958–65.PubMedCrossRefGoogle Scholar
  67. 67.
    Nelson LM. Autoimmune ovarian failure: comparing the mouse model and the human disease. J Soc Gynecol Investig. 2001;8(1 Suppl Proceedings):S55–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Teuscher C, et al. Aod2, the locus controlling development of atrophy in neonatal thymectomy-induced autoimmune ovarian dysgenesis, co-localizes with Il2, Fgfb, and Idd3. J Exp Med. 1996;183(2):631–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Kojima A, Prehn RT. Genetic susceptibility to post-thymectomy autoimmune diseases in mice. Immunogenetics. 1981;14(1-2):15–27.PubMedCrossRefGoogle Scholar
  70. 70.
    Nair S, Caspi RR, Nelson LM. Susceptibility to murine experimental autoimmune oophoritis is associated with genes outside the major histocompatibility complex (MHC). Am J Reprod Immunol. 1996;36(2):107–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Arif S, et al. Human leukocyte antigen-DQB1* genotypes encoding aspartate at position 57 are associated with 3beta-hydroxysteroid dehydrogenase autoimmunity in premature ovarian failure. J Clin Endocrinol Metab. 1999;84(3):1056–60.PubMedGoogle Scholar
  72. 72.
    Reimand K, et al. 3beta-hydroxysteroid dehydrogenase autoantibodies are rare in premature ovarian failure. J Clin Endocrinol Metab. 2000;85(6):2324–6.PubMedGoogle Scholar
  73. 73.
    Kauffman RP, Castracane VD. Premature ovarian failure associated with autoimmune polyglandular syndrome: pathophysiological mechanisms and future fertility. J Womens Health (Larchmt). 2003;12(5):513–20.CrossRefGoogle Scholar
  74. 74.
    Betterle C, et al. Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr Rev. 2002;23(3):327–64.PubMedCrossRefGoogle Scholar
  75. 75.
    Hoek A, Schoemaker J, Drexhage HA. Premature ovarian failure and ovarian autoimmunity. Endocr Rev. 1997;18(1):107–34.PubMedGoogle Scholar
  76. 76.
    Bakalov VK, et al. Adrenal antibodies detect asymptomatic auto-immune adrenal insufficiency in young women with spontaneous premature ovarian failure. Hum Reprod. 2002;17(8):2096–100.PubMedCrossRefGoogle Scholar
  77. 77.
    Forges T, et al. Autoimmunity and antigenic targets in ovarian pathology. Hum Reprod Update. 2004;10(2):163–75.PubMedCrossRefGoogle Scholar
  78. 78.
    Irvine WJ, et al. Immunological aspects of premature ovarian failure associated with idiopathic Addison's disease. Lancet. 1968;2(7574):883–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Dragojevic-Dikic S, et al. An immunological insight into premature ovarian failure (POF). Autoimmun Rev. 2010;9(11):771–4.PubMedCrossRefGoogle Scholar
  80. 80.
    Sinha P, Kuruba N. Premature ovarian failure. J Obstet Gynaecol. 2007;27(1):16–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Nippita TA, Baber RJ. Premature ovarian failure: a review. Climacteric. 2007;10(1):11–22.PubMedCrossRefGoogle Scholar
  82. 82.
    Kelkar RL, et al. Circulating auto-antibodies against the zona pellucida and thyroid microsomal antigen in women with premature ovarian failure. J Reprod Immunol. 2005;66(1):53–67.PubMedCrossRefGoogle Scholar
  83. 83.
    Sundblad V, et al. Alpha-enolase: a novel autoantigen in patients with premature ovarian failure. Clin Endocrinol (Oxf). 2006;65(6):745–51.CrossRefGoogle Scholar
  84. 84.
    Tuohy VK, Altuntas CZ. Autoimmunity and premature ovarian failure. Curr Opin Obstet Gynecol. 2007;19(4):366–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Chen S, et al. Autoantibodies to steroidogenic enzymes in autoimmune polyglandular syndrome, Addison's disease, and premature ovarian failure. J Clin Endocrinol Metab. 1996;81(5):1871–6.PubMedGoogle Scholar
  86. 86.
    LaBarbera AR, et al. Autoimmune etiology in premature ovarian failure. Am J Reprod Immunol Microbiol. 1988;16(3):115–22.PubMedCrossRefGoogle Scholar
  87. 87.
    Betterle C, et al. Premature ovarian failure: autoimmunity and natural history. Clin Endocrinol (Oxf). 1993;39(1):35–43.CrossRefGoogle Scholar
  88. 88.
    Greco CM, et al. Clinical and neuropathologic findings in a woman with the FMR1 premutation and multiple sclerosis. Arch Neurol. 2008;65(8):1114–6.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Coffey SM, et al. Expanded clinical phenotype of women with the FMR1 premutation. Am J Med Genet A. 2008;146A(8):1009–16.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Ebrahimi M, Akbari AF. Pathogenesis and causes of premature ovarian failure: an update. Int J Fertil Steril. 2011;5(2):54–65.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Kokcu A. Premature ovarian failure from current perspective. Gynecol Endocrinol. 2010;26(8):555–62.PubMedCrossRefGoogle Scholar
  92. 92.
    Fraser IS, et al. Failure to identify heterozygotes for galactosaemia in women with premature ovarian failure. Lancet. 1987;2(8558):566.PubMedCrossRefGoogle Scholar
  93. 93.
    Guerrero NV, et al. Risk factors for premature ovarian failure in females with galactosemia. J Pediatr. 2000;137(6):833–41.PubMedCrossRefGoogle Scholar
  94. 94.
    Fridovich-Keil JL, et al. Ovarian function in girls and women with GALT-deficiency galactosemia. J Inherit Metab Dis. 2011;34(2):357–66.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Mlinar B, et al. Galactose-1-phosphate uridyl transferase gene mutations in women with premature ovarian failure. Fertil Steril. 2005;84(1):253–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Forges T, et al. Pathophysiology of impaired ovarian function in galactosaemia. Hum Reprod Update. 2006;12(5):573–84.PubMedCrossRefGoogle Scholar
  97. 97.
    Forges T, Monnier-Barbarino P. [Premature ovarian failure in galactosaemia: pathophysiology and clinical management]. Pathol Biol (Paris). 2003;51(1):47–56.CrossRefGoogle Scholar
  98. 98.
    Schwarz HP, et al. Feminization in a galactosemic girl in the presence of hypergonadotropic hypogonadism. Acta Endocrinol Suppl (Copenh). 1986;279:428–33.Google Scholar
  99. 99.
    Hoefnagel D, Wurster-Hill D, Child EL. Ovarian failure in galactosaemia. Lancet. 1979;2(8153):1197.PubMedCrossRefGoogle Scholar
  100. 100.
    Rubio-Gozalbo ME, et al. Gonadal function in male and female patients with classic galactosemia. Hum Reprod Update. 2010;16(2):177–88.PubMedCrossRefGoogle Scholar
  101. 101.
    Kaufman FR, et al. Hypergonadotropic hypogonadism in female patients with galactosemia. N Engl J Med. 1981;304(17):994–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Morrow RJ, et al. Ovarian failure in a young woman with galactosaemia. Ulster Med J. 1985;54(2):218–20.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Beauvais P, Guilhaume A. Ovarian insufficiency in congenital galactosemia. Presse Med. 1984;13(44):2685–7.PubMedGoogle Scholar
  104. 104.
    Fraser IS, et al. Resistant ovary syndrome and premature ovarian failure in young women with galactosaemia. Clin Reprod Fertil. 1986;4(2):133–8.PubMedGoogle Scholar
  105. 105.
    Sauer MV, et al. Pregnancy after oocyte donation to a woman with ovarian failure and classical galactosemia. Fertil Steril. 1991;55(6):1197–9.PubMedGoogle Scholar
  106. 106.
    Levy HL, et al. Ovarian failure in galactosemia. N Engl J Med. 1984;310(1):50.PubMedGoogle Scholar
  107. 107.
    Liu G, et al. Dietary galactose inhibits GDF-9 mediated follicular development in the rat ovary. Reprod Toxicol. 2006;21(1):26–33.PubMedCrossRefGoogle Scholar
  108. 108.
    Lai KW, et al. Inhibitor of apoptosis proteins and ovarian dysfunction in galactosemic rats. Cell Tissue Res. 2003;311(3):417–25.PubMedGoogle Scholar
  109. 109.
    Chen YT, et al. Reduction in oocyte number following prenatal exposure to a diet high in galactose. Science. 1981;214(4525):1145–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Bandyopadhyay S, et al. Prenatal exposure to high galactose adversely affects initial gonadal pool of germ cells in rats. Hum Reprod. 2003;18(2):276–82.PubMedCrossRefGoogle Scholar
  111. 111.
    Leslie ND, et al. A mouse model of galactose-1-phosphate uridyl transferase deficiency. Biochem Mol Med. 1996;59(1):7–12.PubMedCrossRefGoogle Scholar
  112. 112.
    Wehrli S, Reynolds R, Segal S. Evidence for function of UDP galactose pyrophosphorylase in mice with absent galactose-1-phosphate uridyltransferase. Mol Genet Metab. 2007;91(2):191–4.PubMedCrossRefGoogle Scholar
  113. 113.
    Prestoz LL, et al. Altered follicle stimulating hormone isoforms in female galactosaemia patients. Eur J Pediatr. 1997;156(2):116–20.PubMedCrossRefGoogle Scholar
  114. 114.
    Barrios-De-Tomasi J, et al. Assessment of the in vitro and in vivo biological activities of the human follicle-stimulating isohormones. Mol Cell Endocrinol. 2002;186(2):189–98.PubMedCrossRefGoogle Scholar
  115. 115.
    Donnell GN, et al. Duarte variant-galactosemia heterozygote. Repository identification No. GM-1996. Cytogenet Cell Genet. 1977;19(1):53–4.PubMedCrossRefGoogle Scholar
  116. 116.
    Kaloud H, Sitzmann FC. Gene frequency of hereditary galactosemia with reference to the Duarte variant. Z Kinderheilkd. 1972;113(3):205–14.PubMedCrossRefGoogle Scholar
  117. 117.
    Beutler E. Screening for galactosemia. Studies of the gene frequencies for galactosemia and the Duarte variant. Isr J Med Sci. 1973;9(9):1323–9.PubMedGoogle Scholar
  118. 118.
    Ng WG, Lee JS, Donnell GN. Transferase-deficiency galactosemia and the Duarte variant. JAMA. 1987;257(2):187–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Fernhoff PM. Duarte galactosemia: how sweet is it? Clin Chem. 2010;56(7):1045–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Ficicioglu C, et al. Monitoring of biochemical status in children with Duarte galactosemia: utility of galactose, galactitol, galactonate, and galactose 1-phosphate. Clin Chem. 2010;56(7):1177–82.PubMedCrossRefGoogle Scholar
  121. 121.
    Badik JR, et al. Ovarian function in Duarte galactosemia. Fertil Steril. 2011;96(2):469–473e1.PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Knauff EA, et al. Heterozygosity for the classical galactosemia mutation does not affect ovarian reserve and menopausal age. Reprod Sci. 2007;14(8):780–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Beck-Peccoz P, Persani L. Premature ovarian failure. Orphanet J Rare Dis. 2006;1:9.PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Panay N, Kalu E. Management of premature ovarian failure. Best Pract Res Clin Obstet Gynaecol. 2009;23(1):129–40.PubMedCrossRefGoogle Scholar
  125. 125.
    Meskhi A, Seif MW. Premature ovarian failure. Curr Opin Obstet Gynecol. 2006;18(4):418–26.PubMedCrossRefGoogle Scholar
  126. 126.
    Fenichel P, et al. Prevalence, specificity and significance of ovarian antibodies during spontaneous premature ovarian failure. Hum Reprod. 1997;12(12):2623–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Stedman RL. The chemical composition of tobacco and tobacco smoke. Chem Rev. 1968;68(2):153–207.PubMedCrossRefGoogle Scholar
  128. 128.
    Chmara-Pawlinska R, Szwed A. Cigarette smoking and the age of natural menopause in women in Poland. Przegl Lek. 2004;61(10):1003–5.PubMedGoogle Scholar
  129. 129.
    Rumianowski B, Rotter I, Brodowska A, Adler G, Kowalski J, Karakiewicz B, Laszczyńska M. Influence of selected reproductive factors and smoking on age at menopause. Gesundheitswesen. 2015 Jan 26. [Epub ahead of print] PMID: 25622211.Google Scholar
  130. 130.
    Gold EB, et al. Factors associated with age at natural menopause in a multiethnic sample of midlife women. Am J Epidemiol. 2001;153(9):865–74.PubMedCrossRefGoogle Scholar
  131. 131.
    Westhoff C, Murphy P, Heller D. Predictors of ovarian follicle number. Fertil Steril. 2000;74(4):624–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Dolleman M, et al. Reproductive and lifestyle determinants of anti-Mullerian hormone in a large population-based study. J Clin Endocrinol Metab. 2013;98(5):2106–15.PubMedCrossRefGoogle Scholar
  133. 133.
    Kinney A, et al. Smoking, alcohol and caffeine in relation to ovarian age during the reproductive years. Hum Reprod. 2007;22(4):1175–85.PubMedCrossRefGoogle Scholar
  134. 134.
    Kaufman DW, et al. Cigarette smoking and age at natural menopause. Am J Public Health. 1980;70(4):420–2.PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Jick H, Porter J. Relation between smoking and age of natural menopause. Report from the Boston Collaborative Drug Surveillance Program, Boston University Medical Center. Lancet. 1977;1(8026):1354–5.PubMedCrossRefGoogle Scholar
  136. 136.
    Sobinoff AP, et al. Jumping the gun: smoking constituent BaP causes premature primordial follicle activation and impairs oocyte fusibility through oxidative stress. Toxicol Appl Pharmacol. 2012;260(1):70–80.PubMedCrossRefGoogle Scholar
  137. 137.
    Borman SM, et al. Ovotoxicity in female Fischer rats and B6 mice induced by low-dose exposure to three polycyclic aromatic hydrocarbons: comparison through calculation of an ovotoxic index. Toxicol Appl Pharmacol. 2000;167(3):191–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Pru JK, et al. Induction of proapoptotic gene expression and recruitment of p53 herald ovarian follicle loss caused by polycyclic aromatic hydrocarbons. Reprod Sci. 2009;16(4):347–56.PubMedCrossRefGoogle Scholar
  139. 139.
    Springer LN, et al. Involvement of apoptosis in 4-vinylcyclohexene diepoxide-induced ovotoxicity in rats. Toxicol Appl Pharmacol. 1996;139(2):394–401.PubMedCrossRefGoogle Scholar
  140. 140.
    Tziomalos K, Charsoulis F. Endocrine effects of tobacco smoking. Clin Endocrinol (Oxf). 2004;61(6):664–74.CrossRefGoogle Scholar
  141. 141.
    Sobinoff AP, et al. Scrambled and fried: cigarette smoke exposure causes antral follicle destruction and oocyte dysfunction through oxidative stress. Toxicol Appl Pharmacol. 2013;271(2):156–67.PubMedCrossRefGoogle Scholar
  142. 142.
    Matikainen T, et al. Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. Nat Genet. 2001;28(4):355–60.PubMedCrossRefGoogle Scholar
  143. 143.
    Tuttle AM, Stampfli M, Foster WG. Cigarette smoke causes follicle loss in mice ovaries at concentrations representative of human exposure. Hum Reprod. 2009;24(6):1452–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Weitzman GA, et al. Morphometric assessment of the murine ovarian toxicity of 7,12-dimethylbenz(a)anthracene. Reprod Toxicol. 1992;6(2):137–41.PubMedCrossRefGoogle Scholar
  145. 145.
    Neal MS, et al. Aryl hydrocarbon receptor antagonists attenuate the deleterious effects of benzo[a]pyrene on isolated rat follicle development. Reprod Biomed Online. 2010;21(1):100–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Sadeu JC, Foster WG. Cigarette smoke condensate exposure delays follicular development and function in a stage-dependent manner. Fertil Steril. 2011;95(7):2410–7.PubMedCrossRefGoogle Scholar
  147. 147.
    Sapre S, Thakur R. Lifestyle and dietary factors determine age at natural menopause. J Midlife Health. 2014;5(1):3–5.PubMedCentralPubMedGoogle Scholar
  148. 148.
    Mark-Kappeler CJ, Hoyer PB, Devine PJ. Xenobiotic effects on ovarian preantral follicles. Biol Reprod. 2011;85(5):871–83.PubMedCentralPubMedCrossRefGoogle Scholar
  149. 149.
    Gregoraszczuk EL, Ptak A. Endocrine-disrupting chemicals: some actions of pops on female reproduction. Int J Endocrinol. 2013;2013:828532.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Elias SG, et al. Caloric restriction reduces age at menopause: the effect of the 1944-1945 Dutch famine. Menopause. 2003;10(5):399–405.PubMedCrossRefGoogle Scholar
  151. 151.
    Klein P, Serje A, Pezzullo JC. Premature ovarian failure in women with epilepsy. Epilepsia. 2001;42(12):1584–9.PubMedCrossRefGoogle Scholar
  152. 152.
    Rodriguez-Wallberg KA, Oktay K. Fertility preservation during cancer treatment: clinical guidelines. Cancer Manag Res. 2014;6:105–17.PubMedCentralPubMedGoogle Scholar
  153. 153.
    Panay N, Fenton A. Premature ovarian failure: a growing concern. Climacteric. 2008;11(1):1–3.PubMedCrossRefGoogle Scholar
  154. 154.
    Byrne J. Long-term genetic and reproductive effects of ionizing radiation and chemotherapeutic agents on cancer patients and their offspring. Teratology. 1999;59(4):210–5.PubMedCrossRefGoogle Scholar
  155. 155.
    Koyama H, et al. Cyclophosphamide-induced ovarian failure and its therapeutic significance in patients with breast cancer. Cancer. 1977;39(4):1403–9.PubMedCrossRefGoogle Scholar
  156. 156.
    Chemaitilly W, et al. Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab. 2006;91(5):1723–8.PubMedCrossRefGoogle Scholar
  157. 157.
    Sklar CA, et al. Premature menopause in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst. 2006;98(13):890–6.PubMedCrossRefGoogle Scholar
  158. 158.
    Sklar C. Maintenance of ovarian function and risk of premature menopause related to cancer treatment. J Natl Cancer Inst Monogr. 2005;34:25–7.PubMedCrossRefGoogle Scholar
  159. 159.
    Thibaud E, et al. Ovarian function after bone marrow transplantation during childhood. Bone Marrow Transplant. 1998;21(3):287–90.PubMedCrossRefGoogle Scholar
  160. 160.
    Wallace WH, Thomson AB, Kelsey TW. The radiosensitivity of the human oocyte. Hum Reprod. 2003;18(1):117–21.PubMedCrossRefGoogle Scholar
  161. 161.
    Burke PJ. Human oocyte radiosensitivity. Radiol Technol. 2004;75(6):419–24.PubMedGoogle Scholar
  162. 162.
    Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update. 2001;7(6):535–43.PubMedCrossRefGoogle Scholar
  163. 163.
    Wallace WH, et al. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys. 2005;62(3):738–44.PubMedCrossRefGoogle Scholar
  164. 164.
    de Moraes-Ruehsen M, Jones GS. Premature ovarian failure. Fertil Steril. 1967;18(4):440–61.PubMedGoogle Scholar
  165. 165.
    Green DM, et al. Fertility of female survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2009;27(16):2677–85.PubMedCentralPubMedCrossRefGoogle Scholar
  166. 166.
    Wallace WH, Anderson RA, Irvine DS. Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol. 2005;6(4):209–18.PubMedCrossRefGoogle Scholar
  167. 167.
    Cohen LE. Cancer treatment and the ovary: the effects of chemotherapy and radiation. Ann N Y Acad Sci. 2008;1135:123–5.PubMedCrossRefGoogle Scholar
  168. 168.
    Chapman RM. Gonadal injury resulting from chemotherapy. Am J Ind Med. 1983;4(1-2):149–61.PubMedCrossRefGoogle Scholar
  169. 169.
    Chiarelli AM, Marrett LD, Darlington G. Early menopause and infertility in females after treatment for childhood cancer diagnosed in 1964-1988 in Ontario, Canada. Am J Epidemiol. 1999;150(3):245–54.PubMedCrossRefGoogle Scholar
  170. 170.
    Larsen EC, et al. Reduced ovarian function in long-term survivors of radiation- and chemotherapy-treated childhood cancer. J Clin Endocrinol Metab. 2003;88(11):5307–14.PubMedCrossRefGoogle Scholar
  171. 171.
    Meirow D. Reproduction post-chemotherapy in young cancer patients. Mol Cell Endocrinol. 2000;169(1-2):123–31.PubMedCrossRefGoogle Scholar
  172. 172.
    Schilsky RL, et al. Gonadal dysfunction in patients receiving chemotherapy for cancer. Ann Intern Med. 1980;93(1):109–14.PubMedCrossRefGoogle Scholar
  173. 173.
    Kulkarni SS, et al. Gonadal function following ABVD therapy for Hodgkin's disease. Am J Clin Oncol. 1997;20(4):354–7.PubMedCrossRefGoogle Scholar
  174. 174.
    Howell S, Shalet S. Gonadal damage from chemotherapy and radiotherapy. Endocrinol Metab Clin North Am. 1998;27(4):927–43.PubMedCrossRefGoogle Scholar
  175. 175.
    Oktem O, Oktay K. Quantitative assessment of the impact of chemotherapy on ovarian follicle reserve and stromal function. Cancer. 2007;110(10):2222–9.PubMedCrossRefGoogle Scholar
  176. 176.
    Meirow D, et al. Subclinical depletion of primordial follicular reserve in mice treated with cyclophosphamide: clinical importance and proposed accurate investigative tool. Hum Reprod. 1999;14(7):1903–7.PubMedCrossRefGoogle Scholar
  177. 177.
    Plowchalk DR, Mattison DR. Phosphoramide mustard is responsible for the ovarian toxicity of cyclophosphamide. Toxicol Appl Pharmacol. 1991;107(3):472–81.PubMedCrossRefGoogle Scholar
  178. 178.
    Sato M, et al. Collaborative work on evaluation of ovarian toxicity. 7) Effects of 2- or 4- week repeated dose studies and fertility study of cyclophosphamide in female rats. J Toxicol Sci. 2009;34 Suppl 1:SP83–9.PubMedGoogle Scholar
  179. 179.
    Byrne J, et al. Early menopause in long-term survivors of cancer during adolescence. Am J Obstet Gynecol. 1992;166(3):788–93.PubMedCrossRefGoogle Scholar
  180. 180.
    Yuan H, et al. Comparison of the effect of laparoscopic supracervical and total hysterectomy for uterine fibroids on ovarian reserve by assessing serum anti-Mullerian hormone levels: a prospective cohort study. J Minim Invasive Gynecol. 2015;22(4):637–41.PubMedCrossRefGoogle Scholar
  181. 181.
    Siddle N, Sarrel P, Whitehead M. The effect of hysterectomy on the age at ovarian failure: identification of a subgroup of women with premature loss of ovarian function and literature review. Fertil Steril. 1987;47(1):94–100.PubMedGoogle Scholar
  182. 182.
    Wang HY, et al. Comparison of serum anti-Mullerian hormone levels following hysterectomy and myomectomy for benign gynaecological conditions. Eur J Obstet Gynecol Reprod Biol. 2013;171(2):368–71.PubMedCrossRefGoogle Scholar
  183. 183.
    Moorman PG, et al. Effect of hysterectomy with ovarian preservation on ovarian function. Obstet Gynecol. 2011;118(6):1271–9.PubMedCentralPubMedCrossRefGoogle Scholar
  184. 184.
    Farquhar CM, et al. The association of hysterectomy and menopause: a prospective cohort study. BJOG. 2005;112(7):956–62.PubMedCrossRefGoogle Scholar
  185. 185.
    Amato P, Roberts AC. Transient ovarian failure: a complication of uterine artery embolization. Fertil Steril. 2001;75(2):438–9.PubMedCrossRefGoogle Scholar
  186. 186.
    Hehenkamp WJ, et al. Loss of ovarian reserve after uterine artery embolization: a randomized comparison with hysterectomy. Hum Reprod. 2007;22(7):1996–2005.PubMedCrossRefGoogle Scholar
  187. 187.
    Kaump GR, Spies JB. The impact of uterine artery embolization on ovarian function. J Vasc Interv Radiol. 2013;24(4):459–67.PubMedCrossRefGoogle Scholar
  188. 188.
    Rashid S, et al. The effects of uterine artery embolisation and surgical treatment on ovarian function in women with uterine fibroids. BJOG. 2010;117(8):985–9.PubMedCrossRefGoogle Scholar
  189. 189.
    Disu S, Kalu E. The effects of uterine artery embolisation and surgical treatment on ovarian function in women with uterine fibroids. BJOG. 2010;117(13):1663. author reply 1663-4.PubMedCrossRefGoogle Scholar
  190. 190.
    Busacca M, et al. Postsurgical ovarian failure after laparoscopic excision of bilateral endometriomas. Am J Obstet Gynecol. 2006;195(2):421–5.PubMedCrossRefGoogle Scholar
  191. 191.
    Di Prospero F, Micucci G. Is operative laparoscopy safe in ovarian endometriosis? Reprod Biomed Online. 2009;18(2):167.PubMedCrossRefGoogle Scholar
  192. 192.
    Coccia ME, et al. Ovarian surgery for bilateral endometriomas influences age at menopause. Hum Reprod. 2011;26(11):3000–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nastaran Foyouzi
    • 1
  • Lisa J. Green
    • 1
  • Sally A. Camper
    • 2
    • 3
    Email author
  1. 1.Division of Reproductive Endocrinology and Infertility, OB & GYN DepartmentUniversity of MichiganAnn ArborUSA
  2. 2.Department of Human GeneticsJames V. Neel Professor and ChairAnn ArborUSA
  3. 3.Department of Internal MedicineJames V. Neel Professor and ChairAnn ArborUSA

Personalised recommendations