Skip to main content

Tensor Factorisation Approach for Separation of Convolutive Complex Communication Signals

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9237))

Abstract

Communication signals such as multiple constellation signals have complex waveforms and may have multipath source reflection and noncircularity problems. Tensor based source separation techniques have become increasingly popular for various applications as they exploit different inherent diversities of the sources. In this paper, a tensor based convolutive source separation algorithm is developed based on PARAFAC2. The optimisation technique is based on the direct model fitting of PARAFAC and augmented statistics. The proposed method is evaluated using simulated data with multiple pathways and various noncircularity levels. Simulation results confirm the superiority of the proposed method over the existing popular techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bingham, E., Hyvärinen, A.: A fast fixed-point algorithm for independent component analysis of complex valued signals. J. Neural Syst. 10(01), 1–8 (2000)

    Article  Google Scholar 

  2. Bro, R., Kiers, H.A.: A new efficient method for determining the number of components in parafac models. J. Chemometrics 17(5), 274–286 (2003)

    Article  Google Scholar 

  3. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an N-way generalization of ‘Eckart-Young’ decomposition. Psychometrika 35(3), 283–319 (1970)

    Article  MATH  Google Scholar 

  4. Cheong Took, C., Mandic, D.P.: Augmented second-order statistics of quaternion random signals. Signal Process. 91(2), 214–224 (2011)

    Article  MATH  Google Scholar 

  5. Comon, P.: Tensor decompositions, state of the art and applications (2009). arXiv preprint arXiv:0905.0454

  6. Douglas, S.C.: Fixed-point algorithms for the blind separation of arbitrary complex-valued non-gaussian signal mixtures. EURASIP 2007, 83 (2007)

    Google Scholar 

  7. Green, B.F.: The orthogonal approximation of an oblique structure in factor analysis. Psychometrika 17(4), 429–440 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  8. Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis. UCLA Working Pap. Phonetics 16, 1–84 (1970)

    Google Scholar 

  9. Huang, L.K., Manikas, A.: Blind single-user array receiver for MAI cancellation in multipath fading DS-CDMA channels. EUSIPCO Proc. 2, 647–650 (2000)

    MATH  Google Scholar 

  10. Javidi, S., Took, C.C., Mandic, D.P.: Fast independent component analysis algorithm for quaternion valued signals. IEEE Trans. Neural Network. 22(12), 1967–1978 (2011)

    Article  Google Scholar 

  11. Kawamoto, M., Matsuoka, K., Ohnishi, N.: A method of blind separation for convolved non-stationary signals. Neurocomputing 22(1), 157–171 (1998)

    Article  MATH  Google Scholar 

  12. Kiers, H.A., Ten Berge, J.M., Bro, R.: PARAFAC2-Part I: a direct fitting algorithm for the PARAFAC2 model. J. Chemometrics 13(3–4), 275–294 (1999)

    Article  Google Scholar 

  13. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mandic, D.P., Goh, V.S.L.: Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models, vol. 59. Wiley, New York (2009)

    Book  Google Scholar 

  15. Murata, N., Ikeda, S., Ziehe, A.: An approach to blind source separation based on temporal structure of speech signals. Neurocomputing 41(1), 1–24 (2001)

    Article  MATH  Google Scholar 

  16. Nazarpour, K., Praamstra, P., Miall, R., Sanei, S.: Steady-state movement related potentials for BCI an exploratory approach in the STF domain. In: Proceedings of BCI (2008)

    Google Scholar 

  17. Novey, M., Adali, T.: On extending the complex fastica algorithm to noncircular sources. IEEE Trans. Sig. Process. 56(5), 2148–2154 (2008)

    Article  MathSciNet  Google Scholar 

  18. Ollila, E.: On the circularity of a complex random variable. IEEE Sig. Process. Lett. 15, 841–844 (2008)

    Article  Google Scholar 

  19. Parra, L., Spence, C.: Convolutive blind separation of non-stationary sources. IEEE Trans. Speech Audio Process. 8(3), 320–327 (2000)

    Article  MATH  Google Scholar 

  20. Pedersen, M.S., Larsen, J., Kjems, U., Parra, L.C.: A survey of convolutive blind source separation methods. Multichannel Speech Process, 1065–1084 (2007)

    Google Scholar 

  21. Wee, H., Principe, J.: A criterion for BSS based on simultaneous diagonalization of time correlation matrices. In: NNSP, vol. 97, pp. 496–508 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaneh Kouchaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kouchaki, S., Sanei, S. (2015). Tensor Factorisation Approach for Separation of Convolutive Complex Communication Signals. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2015. Lecture Notes in Computer Science(), vol 9237. Springer, Cham. https://doi.org/10.1007/978-3-319-22482-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22482-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22481-7

  • Online ISBN: 978-3-319-22482-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics