Skip to main content

Bayesian Blind Source Separation with Unknown Prior Covariance

  • Conference paper
  • First Online:
Book cover Latent Variable Analysis and Signal Separation (LVA/ICA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9237))

Abstract

The task of blind source separation (BSS) is to recover original signal sources which are observed only via their superposition with unknown weights. Since we are interested in estimation of the number of relevant sources in noisy observation, we use the Bayesian formulation which automatically removes spurious sources. A tool for this behavior is joint estimation of the unknown prior covariance matrix of the sources in tandem with the sources. In this work, we study the effect of various choices of the covariance matrix structure. Specifically, we compare models using the automatic relevance determination (ARD) principle on the first and the second diagonal, as well as full covariance matrix with Wishart prior. We obtain five versions of the variational BSS algorithm. These are tested on synthetic data and on a selected dataset from dynamic renal scintigraphy. MATLAB implementation of the methods is available for download.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.dynamicrenalstudy.org.

References

  1. Araújo, M.C.U., Saldanha, T.C.B., Galvão, R.K.H., Yoneyama, T., Chame, H.C., Visani, V.: The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometr. Intell. Lab. Syst. 57(2), 65–73 (2001)

    Article  Google Scholar 

  2. Bishop, C.M.: Variational principal components. In: IET Conference Proceedings, pp. 509–514(5), January 1999

    Google Scholar 

  3. Gaspari, G., Cohn, S.E.: Construction of correlation functions in two and three dimensions. Q. J. Roy. Meteorol. Soc. 125(554), 723–757 (1999)

    Article  Google Scholar 

  4. Gillis, N.: Successive nonnegative projection algorithm for robust nonnegative blind source separation. SIAM J. Imaging Sci. 7(2), 1420–1450 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hamill, T.M., Whitaker, J.S., Snyder, C.: Distance-dependent filtering of background error covariance estimates in an ensemble kalman filter. Mon. Weather Rev. 129(11), 2776–2790 (2001)

    Article  Google Scholar 

  6. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis, vol. 46. Wiley, New York (2004)

    Google Scholar 

  7. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Proceedings of Advances in neural information processing systems, pp. 556–562 (2001)

    Google Scholar 

  8. Margadán-Méndez, M., Juslin, A., Nesterov, S.V., Kalliokoski, K., Knuuti, J., Ruotsalainen, U.: ICA based automatic segmentation of dynamic cardiac PET images. IEEE Trans. Inf. Technol. Biomed. 14(3), 795–802 (2010)

    Article  Google Scholar 

  9. Miskin, J.W.: Ensemble learning for independent component analysis. Ph.D. thesis, University of Cambridge (2000)

    Google Scholar 

  10. Moussaoui, S., Hauksdottir, H., Schmidt, F., Jutten, C., Chanussot, J., Brie, D., Douté, S., Benediktsson, J.A.: On the decomposition of mars hyperspectral data by ica and bayesian positive source separation. Neurocomputing 71(10), 2194–2208 (2008)

    Article  Google Scholar 

  11. Šmídl, V., Quinn, A.: The Variational Bayes Method in Signal Processing. Springer, Heidelberg (2006)

    Google Scholar 

  12. Šmídl, V., Quinn, A.: On bayesian principal component analysis. Comput. Stat. Data Anal. 51(9), 4101–4123 (2007)

    Article  MATH  Google Scholar 

  13. Tichý, O., Šmídl, V.: Non-parametric bayesian models of response function in dynamic image sequences. Pre-print submitted to Computer Vision and Image Understanding (arXiv:1503.05684 [stat.ML]) (2015)

  14. Tipping, M.E.: Sparse bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Roy. Stat. Soc. B (Stat. Methodol.) 61(3), 611–622 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by the Czech Science Foundation, grant No. 13-29225S, and by the Grant Agency of the Czech Technical University in Prague, grant No. SGS14/205/OHK4/3T/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Tichý .

Editor information

Editors and Affiliations

A Shaping Parameters of Posterior Distributions

A Shaping Parameters of Posterior Distributions

Posterior distributions are \(\tilde{f}(A|D)=t\mathcal {N}_{A}(\mu _{A},I_{p}\otimes {\varSigma }_{A}),\) \(\tilde{f}(\xi _{k}|D)=\mathcal {G}_{\xi _{k}}\left( \phi _{k},\psi _{k}\right) ,\) \(\tilde{f}(\mathbf {x}|D)=t\mathcal {N}_{\mathbf {x}}\left( \mu _{\mathbf {x}},{\varSigma }_{\mathbf {x}}\right) ,\) \(\tilde{f}({\varUpsilon }|D)=\mathcal {W}_{{\varUpsilon },nr}\left( {\varSigma }_{{\varUpsilon }},\beta \right) ,\) \(\tilde{f}(\omega |D)=\mathcal {G}_{\omega }\left( \vartheta ,\rho \right) ,\) with shaping parameters \({\varSigma }_{A}^{-1}=\left( \omega \widehat{X^{T}X}+\widehat{\Xi }\right) ,\) \(\mu _{A}=\left( \omega D\widehat{X}\right) {\varSigma }_{A},\) \(\phi =\phi _{0}+\frac{p}{2}\mathbf {1}_{r,1},\) \(\psi =\psi _{0}+\frac{1}{2}\mathrm {diag}\left( {\widehat{A^{T}A}}\right) ,\) \({\varSigma }_{\mathbf {x}}^{-1}=\left( ({\widehat{\omega }}{\widehat{A^{T}A}})\otimes I_{n}+{\widehat{{\varUpsilon }}}\circ L\right) \) \(\mu _{\mathbf {x}}={\varSigma }_{\mathbf {x}}\left( {\widehat{\omega }}\mathrm {vec}\left( D^{T}{\widehat{A}}\right) \right) \) \({\varSigma }_{{\varUpsilon }}^{-1}=\left( {\widehat{\mathbf {x}\mathbf {x}^{T}}}+\alpha _{0}^{-1}I_{nr}\right) \) \(\beta =\beta _{0}+1\) \(\vartheta =\vartheta _{0}+\frac{pn}{2},\) \(\rho =\rho _{0}+\frac{1}{2}\mathrm {tr}\left( (D-{\widehat{A}}{\widehat{X^{T}}})(D-{\widehat{A}}{\widehat{X^{T}}})^{T}\right) .\)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tichý, O., Šmídl, V. (2015). Bayesian Blind Source Separation with Unknown Prior Covariance. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2015. Lecture Notes in Computer Science(), vol 9237. Springer, Cham. https://doi.org/10.1007/978-3-319-22482-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22482-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22481-7

  • Online ISBN: 978-3-319-22482-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics