Skip to main content

Sparsity and Cosparsity for Audio Declipping: A Flexible Non-convex Approach

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9237))

Abstract

This work investigates the empirical performance of the sparse synthesis versus sparse analysis regularization for the ill-posed inverse problem of audio declipping. We develop a versatile non-convex heuristics which can be readily used with both data models. Based on this algorithm, we report that, in most cases, the two models perform almost similarly in terms of signal enhancement. However, the analysis version is shown to be amenable for real time audio processing, when certain analysis operators are considered. Both versions outperform state-of-the-art methods in the field, especially for the severely saturated signals.

R. Gribonval—This work was supported in part by the European Research Council, PLEASE project (ERC-StG-2011-277906).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Observe that if D and A are unitary matrices, the two problems become identical.

  2. 2.

    Recall that the matrices \({{{\varvec{M}}}_\mathrm{r}}\), \({{{\varvec{M}}}_\mathrm{c}^+}\) and \({{{\varvec{M}}}_\mathrm{c}^-}\) are tight frames by design.

  3. 3.

    We use the implementation kindly provided by the authors.

  4. 4.

    All algorithms were implemented in Matlab®, and run in single-thread mode.

References

  1. Adler, A., Emiya, V., Jafari, M.G., Elad, M., Gribonval, R., Plumbley, M.D.: Audio inpainting. IEEE Trans. Audio Speech Lang. Process. 20(3), 922–932 (2012)

    Article  Google Scholar 

  2. Aydin, T.O., Mantiuk, R., Myszkowski, K., Seidel, H.: Dynamic range independent image quality assessment. In: ACM Transactions on Graphics (TOG), vol. 27, p. 69. ACM (2008)

    Google Scholar 

  3. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  4. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Computat. Harmonic Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  Google Scholar 

  5. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  6. Defraene, B., Mansour, N., De Hertogh, S., van Waterschoot, T., Diehl, M., Moonen, M.: Declipping of audio signals using perceptual compressed sensing. IEEE Trans. Audio Speech Lang. Process. 21(12), 2627–2637 (2013)

    Article  Google Scholar 

  7. Elad, M., Milanfar, P., Rubinstein, R.: Analysis versus synthesis in signal priors. Inverse Probl. 23(3), 947 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  9. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Springer, New York (2013)

    Book  MATH  Google Scholar 

  10. Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC music database: popular, classical and jazz music databases. ISMIR 2, 287–288 (2002)

    Google Scholar 

  11. Harvilla, M.J., Stern, R.M.: Least squares signal declipping for robust speech recognition. In: INTERSPEECH (2014)

    Google Scholar 

  12. Janssen, A., Veldhuis, R., Vries, L.: Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes. IEEE Trans. Acoust. Speech Sig. Process. 34(2), 317–330 (1986)

    Article  Google Scholar 

  13. Kahrs, M., Brandenburg, K.: Applications of Digital Signal Processing to Audio and Acoustics, vol. 437. Springer Science and Business Media, New York (1998)

    MATH  Google Scholar 

  14. Kitić, S., Bertin, N., Gribonval, R.: Audio declipping by cosparse hard thresholding. In: iTwist-2nd International-Traveling Workshop on Interactions Between Sparse Models and Technology (2014)

    Google Scholar 

  15. Kitić, S., Jacques, L., Madhu, N., Hopwood, M.P., Spriet, A., De Vleeschouwer, C.: Consistent iterative hard thresholding for signal declipping. In: IEEE ICASSP, pp. 5939–5943. IEEE (2013)

    Google Scholar 

  16. Kowalski, M., Siedenburg, K., Dorfler, M.: Social sparsity! neighborhood systems enrich structured shrinkage operators. IEEE Trans. Sig. Process. 61(10), 2498–2511 (2013)

    Article  MathSciNet  Google Scholar 

  17. Li, X., Cimini, L.J.: Effects of clipping and filtering on the performance of OFDM. In: 47th IEEE Vehicular Technology Conference, vol. 3, pp. 1634–1638. IEEE (1997)

    Google Scholar 

  18. Naik, S.K., Murthy, C.A.: Hue-preserving color image enhancement without gamut problem. IEEE Trans. Image Process. 12(12), 1591–1598 (2003)

    Article  Google Scholar 

  19. Nam, S., Davies, M.E., Elad, M., Gribonval, R.: The cosparse analysis model and algorithms. Appl. Comput. Harmonic Anal. 34(1), 30–56 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Plumbley, M.D., Blumensath, T., Daudet, L., Gribonval, R., Davies, M.E.: Sparse representations in audio and music: from coding to source separation. Proc. IEEE 98(6), 995–1005 (2010)

    Article  Google Scholar 

  21. Siedenburg, K., Kowalski, M., Dorfler, M.: Audio declipping with social sparsity. In: IEEE ICASSP, pp. 1577–1581. IEEE (2014)

    Google Scholar 

  22. Tachioka, Y., Narita, T., Ishii, J.: Speech recognition performance estimation for clipped speech based on objective measures. Acoust. Sci. Technol. 35(6), 324–326 (2014)

    Article  Google Scholar 

  23. Weinstein, A.J., Wakin, M.B.: Recovering a clipped signal in sparseland (2011). arXiv preprint arXiv:1110.5063

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srđan Kitić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kitić, S., Bertin, N., Gribonval, R. (2015). Sparsity and Cosparsity for Audio Declipping: A Flexible Non-convex Approach. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2015. Lecture Notes in Computer Science(), vol 9237. Springer, Cham. https://doi.org/10.1007/978-3-319-22482-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22482-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22481-7

  • Online ISBN: 978-3-319-22482-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics