Skip to main content

Dynalets: A New Tool for Biological Signal Processing

  • Conference paper
Functional Statistics and Applications

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

  • 942 Accesses

Abstract

The biological information coming from electro-physiologic signal sensors needs compression for an efficient medical use or for retaining only the pertinent explanatory information about the mechanisms at the origin of the recorded signal. When the signal is periodic in time and/or space, classical compression procedures like Fourier and wavelets transforms give good results concerning the compression rate, but provide in general no additional information about the interactions between the elements of the living system producing the studied signal. Here, we define a new transform called Dynalets based on Liénard differential equations susceptible to model the mechanism at the source of the signal and we propose to apply this new technique to real signals like ECG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bub, G., Glass, L., Shrier, A.: Coupling dependent wavefront stability in heterogeneous cardiac cell cultures. Biophys. J. 84, 408 (2003)

    Article  Google Scholar 

  2. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. de Rooi, J.J., Eilers, P.H.C.: Mixture models for baseline estimation. Chemom. Intell. Lab. Syst. 117, 56–60 (2012)

    Article  Google Scholar 

  4. Demongeot J., Glade, N., Forest, L.: Liénard systems and potential-Hamiltonian decomposition I methodology. C. R. Math. 344, 121–126 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Demongeot, J., Glade, N., Forest, L.: Liénard systems and potential-Hamiltonian decomposition II algorithm. C. R. Math. 344, 191–194 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Demongeot, J., Hansen, O., Hamie, A.: Dynalets: a new tool for biological signal processing. In: Medicon’13, IFBME Proceedings, vol. 41, pp. 1250–1253. Springer, New York (2014)

    Google Scholar 

  7. Eilers, P.H.C., Boelens, H.F.M.: Baseline correction with asymmetric least squares smoothing. Leiden University Medical Centre Report (2005)

    Google Scholar 

  8. Fenton, F.H., Cherry, E.M.: Models of cardiac cell. Scholarpedia 3, 1868 (2008)

    Article  Google Scholar 

  9. Fisher, E.: The period and amplitude of the van der Pol limit cycle. J. Appl. Phys. 25, 273–274 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fourier, J.: Propagation de la Chaleur dans les corps solides. Nouv. Bull. Sci. Soc. Philomathique de Paris 6, 112–116 (1808)

    Google Scholar 

  11. Glaria, A., Zepeda, H., Chabert, S., Hidalgo, S.M., Demongeot. J., Taramasco, C.: Complex adaptive systems with inference learning emergent property to estimate tailored to the problem specificity mathematical transforms: three study cases. In: ECCS’13, Complex Systems Society, Barcelona, pp. 127–129 (2013)

    Google Scholar 

  12. Lemarié, P.G., Meyer, Y.: Ondelettes et bases hilbertiennes. Rev. Mat. Iberoam. 2, 1–18 (1986)

    Article  Google Scholar 

  13. Lind, R., Brenner, M., Haley, S.M.: Estimation of modal parameters using a wavelet-based approach. NASA Report TM-97-206300 (1997)

    Google Scholar 

  14. Lopez, J.L., Abbasbandy, S., Lopez-Ruiz, R.: Formulas for the amplitude of the van der Pol limit cycle. Schol Res. Exch. 2009, 854060 (2009)

    Google Scholar 

  15. Mallat, S.: A theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  16. McAllister, R.E., Noble, D., Tsien, R.W.: Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol. 251, 1–59 (1975)

    Article  Google Scholar 

  17. Meyer, Y.: Wavelets and operators. In: Analysis at Urbana. Lecture Notes Series, vol. 137, pp. 256–365. London Mathematical Society, London (1989)

    Google Scholar 

  18. Noble, D.: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potential. J. Physiol. 160, 317–352 (1962)

    Article  Google Scholar 

  19. Pandit, S.V.: ECG baseline drift removal through STFT. In: Proceedings of IEEE EMBS 1996, pp. 1405–1406 (1996)

    Google Scholar 

  20. Paul, B., Mythili, P.: ECG noise removal using GA tuned sign-data least mean square algorithm. In: IEEE ICACCT, pp. 100–103 (2012)

    Google Scholar 

  21. Schnabel, S.K., Eilers, P.H.C.: Optimal expectile smoothing. Comput. Stat. Data Anal. 53, 4168–4177 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sornmo, L.: Time varying digital filtering of ECG baseline wander. In: Proceedings of IEEE EMBS 1993, pp. 503–508 (1993)

    Google Scholar 

  23. von Borries, R.F., Pierluissi, J.H., Nazeran, H.: Wavelet transform based ECG baseline drift removal for body surface potential mapping. In: Proceedings of IEEE EMBS 2005, pp. 3891–3894 (2005)

    Google Scholar 

Download references

Acknowledgements

We indebted to Campus France CMCU for supporting us with the grant PHC Maghreb SCIM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Demongeot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Demongeot, J., Hamie, A., Hansen, O., Rachdi, M. (2015). Dynalets: A New Tool for Biological Signal Processing . In: Ould Saïd, E., Ouassou, I., Rachdi, M. (eds) Functional Statistics and Applications. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-22476-3_9

Download citation

Publish with us

Policies and ethics