Skip to main content

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 3591 Accesses

Abstract

As discussed previously, the computational efficiency of the reduced basis method relies strongly on the affine assumption , i.e., we generally assume that \(a(w,v;\mu ) = \sum _{q = 1}^{{Q_\mathtt{a}}} \theta _\mathtt{a}^q(\mu ) \, a_q(w,v), \qquad \forall w,v \in \mathbb V, \, \forall \mu \in \mathbb P\), and similarly for the righthand side and the output of interest. Unfortunately, this assumption fails for the majority of problems one would like to consider and it is essential to look for ways to overcome this assumption by approximating the non-affine elements in a suitable way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Barrault, Y. Maday, N.C. Nguyen, A.T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. C.R. Math. 339, 667–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. M.A. Grepl, Y. Maday, N.C. Nguyen, A.T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM Math. Model. Numer. Anal. 41, 575–605 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Maday, N.C. Nguyen, A.T. Patera, G.S. Pau, A general, multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8, 383–404 (2007)

    Article  MathSciNet  Google Scholar 

  4. J.L. Eftang, M.A. Grepl, A.T. Patera, A posteriori error bounds for the empirical interpolation method. C.R. Math. 348, 575–579 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Chen, A. Quarteroni, G. Rozza, A weighted empirical interpolation method: a priori convergence analysis and applications. ESAIM: M2AN 48, 943–953 (2014)

    Google Scholar 

  6. J.L. Eftang, B. Stamm, Parameter multi-domain hp empirical interpolation. Int. J. Numer. Methods Eng. 90, 412–428 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.S. Hesthaven, B. Stamm, S. Zhang, Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods. ESAIM Math. Model. Numer. Anal. 48, 259–283 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Chaturantabut, D.C. Sorensen, Discrete empirical interpolation for nonlinear model reduction, in Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference CDC/CCC 2009 (IEEE, 2009), pp. 4316–4321

    Google Scholar 

  9. S. Chaturantabut, D.C. Sorensen, Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32, 2737–2764 (2010)

    Google Scholar 

  10. Y. Maday, O. Mula, A generalized empirical interpolation method: application of reduced basis techniques to data assimilation, in Analysis and Numerics of Partial Differential Equations (Springer, Berlin, 2013), pp. 221–235

    Google Scholar 

  11. Y. Maday, O. Mula, G. Turinici, et al., A priori convergence of the generalized empirical interpolation method, in 10th International Conference on Sampling Theory and Applications (SampTA 2013), Breman, Germany (2013), pp. 168–171

    Google Scholar 

  12. F. Casenave, A. Ern, T. Lelievre, A nonintrusive reduced basis method applied to aeroacoustic simulations. Adv. Comput. Math. 1–26 (2014)

    Google Scholar 

  13. M. Bebendorf, Y. Maday, B. Stamm, Comparison of some reduced representation approximations, in Reduced Order Methods for Modeling and Computational Reduction (Springer, Berlin, 2014), pp. 67–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan S. Hesthaven .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Hesthaven, J.S., Rozza, G., Stamm, B. (2016). The Empirical Interpolation Method. In: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-22470-1_5

Download citation

Publish with us

Policies and ethics