Skip to main content

Streptococcal Superantigens

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Microbiology ((BRIEFSMICROBIOL))

Abstract

This book starts with a basic knowledge about Streptococcus pyogenes as a pathogen. It elucidates briefly about the array of virulence factors possessed by Streptococcus pyogenes. These help in evading host immune responses such as by the activation of nonspecific T-cell subpopulations, cleaving of IgG, degradation of chemokines and inactivation of complement system. It also releases DNases to chop down neutrophil entrapments (NETs) and proteases for cleaving antimicrobial peptides and proteins. Out of all the virulence factors, this book mainly targets superantigens and explains how they are different from conventional antigens. These molecules can trigger massive T-cell proliferation like a mitogen, but its MHC class II dependency remains a prerequisite. Unlike the conventional antigens, superantigens (SAg) do not require preprocessing and display onto Antigen presenting cells (APC). They form MHC class II/SAg/TCR complex by binding to the variable β (Vβ) subunit of T-cells and thus lead to nonspecific proliferation of subset of T-cells. Furthermore, it is seen that SAgs bring different subtypes of cells closer, thus compelling them to exchange signals that lead to biochemical changes and thus triggering inflammatory cytokines release. Moreover, this book also elaborates those diseases in which superantigens are actively involved. In addition, useful aspects of superantigens and different therapeutic interventions to eradicate superantigens induced diseased have also been discussed in this book. Overall, this book is an attempt to provide ample knowledge and better understanding about Streptococcus pyogenes and their superantigens for readers. To develop easy understanding, many illustrative figures have also been used to explain the text.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agniswamy, J., Lei, B., Musser, J. M., & Sun, P. D. (2004). Insight of host immune evasion mediated by two variants of group a Streptococcus Mac protein. Journal of Biological Chemistry, 279(50), 52789–52796.

    Google Scholar 

  • Alouf, J. E., & Müller-Alouf, H. (2003). Staphylococcal and streptococcal superantigens: Molecular, biological and clinical aspects. International Journal of Medical Microbiology (IJMM), 292(7–8), 429–440. doi:10.1078/1438-4221-00232.

    CAS  Google Scholar 

  • Alouf, J. E., Mueller-Alouf, H., & Koehler, W. (1999). Superantigenic Streptococcus pyogenes erythrogenic/pyrogenic exotoxins. In J. E. Alouf & J. H. Freer (Eds.), Sourcebook of bacterial protein toxins. San Diego: Academic Press

    Google Scholar 

  • Andersson, U., Björk, L., Skansén-Saphir, U., & Andersson, J. (1994). Pooled human IgG modulates cytokine production in lymphocytes and monocytes. Immunological Reviews, 139(139), 21–42.

    CAS  PubMed  Google Scholar 

  • Andrews R. M., McCarthy J., Carapetis J. R., Currie B. J. (2009). Skin disorders, including pyoderma, scabies, and tinea infection. Pediatric Clinics of North America, 56(6), 1421–40.

    Google Scholar 

  • Ato, M., Ikebe, T., Kawabata, H., Takemori, T., & Watanabe, H. (2008). Incompetence of neutrophils to invasive group a Streptococcus is attributed to induction of plural virulence factors by dysfunction of a regulator. PLoS ONE, 3, e3455.

    PubMed Central  PubMed  Google Scholar 

  • Andreoni, F., Ogawa, T., Ogawa, M., Madon, J., Uchiyama, S., Schuepbach, R. A., & Zinkernagel, A. S. (2014). The IL-8 protease SpyCEP is detrimental for group A Streptococcus host-cells interaction and biofilm formation. Frontiers in Microbiology, 5, 339. doi:10.3389/fmicb.2014.00339.

  • Baker, H. M., Proft, T., Webb, P. D., Arcus, V. L., Fraser, J. D., & Baker, E. N. (2004). Crystallographic and mutational data show that the streptococcal pyrogenic exotoxin J can use a common binding surface for T-cell receptor binding and dimerization. Journal of Biological Chemistry, 279(37), 38571–38576. doi:10.1074/jbc.M406695200.

    CAS  PubMed  Google Scholar 

  • Baker, M. D., & Acharya, K. R. (2004). Superantigens: Structure-function relationships. International Journal of Medical Microbiology, 293, 529–537.

    CAS  PubMed  Google Scholar 

  • Baker, M., Gutman, D. M., Papageorgiou, A. C., Collins, C. M., & Acharya, K. R. (2001). Structural features of a zinc binding site in the superantigen strepococcal pyrogenic exotoxin A (SpeA1): Implications for MHC class II recognition. Protein Science: A Publication of the Protein Society, 10(6), 1268–1273. doi:10.1110/ps.330101.

    CAS  Google Scholar 

  • Barnham, M. R. D., Weightman, N. C., Anderson, A W., & Tanna, A. (2002). Streptococcal toxic shock syndrome: a description of 14 cases from North Yorkshire, UK. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 8(3), 174–181. doi:10.1046/j.1469-0691.2002.00396.x.

  • Barry, W., Hudgins, L., Donta, S. T., & Pesanti, E. L. (1992). Intravenous Immunoglobulin therapy for toxic shock syndrome. JAMA, 267(24), 3315–3316. doi:10.1001/jama.1992.03480240077038.

    CAS  PubMed  Google Scholar 

  • Basma, H., Norrby-Teglund, A., Geer, A. M. C., Low, D. E., El-Ahmedy, O., Dale, J. B., et al. (1998). Opsonic antibodies to the surface M protein of group A streptococci in pooled normal immunoglobulins (IVIG): Potential impact on the clinical efficacy of IVIG therapy for Severe Invasive Group A Streptococcal Infections. Infection and Immunity, 66(5), 2279–2283.

    Google Scholar 

  • Basma, H., Norrby-Teglund, A., Guedez, Y., Geer, A. M. C., Low, D. E., El-ahmedy, O., et al. (1999). Risk factors in the pathogenesis of invasive group a streptococcal infections: Role of protective humoral immunity. Infection and Immunity, 67(4), 1871–1877.

    Google Scholar 

  • Bavari, S., Ulrich, R. G., & LeClaire, R. D. (1999). Cross-reactive antibodies prevent the lethal effects of Staphylococcus aureus superantigens. Journal of Infectious Diseases, 180, 1365–1369.

    CAS  PubMed  Google Scholar 

  • Bhatia, S., Edidin, M., Almo, S. C., & Nathenson, S. (2006). B7-1 and B7-2: Similar costimulatory ligands with different biochemical, oligomeric and signaling properties. Immunology Letters, 104, 70–75.

    CAS  PubMed  Google Scholar 

  • Bhatnagar, A., Grover, A., & Ganguly, N. K. (1999). Superantigen-induced T cell responses in acute rheumatic fever and chronic: Rheumatic heart disease patients. Clinical and Experimental Immunology, 116, 100–106. doi:10.1046/j.1365-2249.1999.00853.x.

  • Bisno, A. L., Brito, M. O., & Collins, C. M. (2003). Molecular basis of group A streptococcal virulence. Lancet Infectious Diseases, 3(4), 191–200.

    Google Scholar 

  • Bohach, G. A., Hauser, A. R., & Schlievert, P. M. (1988). Cloning of the gene, speB, for streptococcal pyrogenic exotoxin type B in Escherichia coli. Infection and Immunity, 56(6), 1665–1667.

    Google Scholar 

  • Bonnetblanc, J. M., & Bédane, C. (2003). Erysipelas: Recognition and management. American Journal of Clinical Dermatology,. doi:10.2165/00128071-200304030-00002.

    PubMed  Google Scholar 

  • Brinkmann, V., et al. (2004). Neutrophil extracellular traps kill bacteria. Science, 303, 1532–1535.

    CAS  PubMed  Google Scholar 

  • Brosnahan, A. J., Mantz, M. J., Squier, C. A., Peterson, M. L., & Schlievert, P. M. (2009). Cytolysins augment superantigen penetration of stratified mucosa. Journal of Immunology, 182, 2364–2373.

    CAS  Google Scholar 

  • Bryant, A. E., Bayer, C. R., Chen, R. Y. Z., Guth, P. H., Wallace, R. J., & Stevens, D. L. (2005). Vascular dysfunction and ischemic destruction of tissue in Streptococcus pyogenes infection: the role of streptolysin O-induced platelet/neutrophil complexes. The Journal of Infectious Diseases, 192(6), 1014–1022. doi:10.1086/432729.

    CAS  PubMed  Google Scholar 

  • Buchanan, J. T., et al. (2006). DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Current Biology, 16, 396–400.

    CAS  PubMed  Google Scholar 

  • Carapetis, J. R., Steer, A. C., Mulholland, E. K., & Weber, M. (2005). The global burden of group A streptococcal diseases. Lancet, 5(November), 685–694.

    PubMed  Google Scholar 

  • Carroll, R. K., & Musser, J. M. (2011). From transcription to activation: how group a streptococcus, the flesh-eating pathogen, regulates SpeB cysteine protease production. Molecular Microbiology, 81(3), 588–601. doi:10.1111/j.1365-2958.2011.07709.x.

    CAS  PubMed  Google Scholar 

  • Cawley, M. J., Briggs, M., Haith, L. R., Reilly, K. J., Guilday, R. E., Braxton, G. R., & Patton, M. L. (1999). Intravenous immunoglobulin as adjunctive treatment for streptococcal toxic shock syndrome associated with necrotizing fasciitis: Case report and review. Clinical And Translational Science, 19(9), 1094–1098.

    CAS  Google Scholar 

  • Chaussee, M. S., Liu, J., Stevens, D. L., & Ferretti, J. J. (1996). Genetic and phenotypic diversity among isolates of Streptococcus pyogenes from invasive infections. The Journal of Infectious Diseases, 173, 901–908.

    CAS  PubMed  Google Scholar 

  • Chiappini, N., Seubert, A., Telford, J. L., Grandi, G., Serruto, D., Margarit, I., et al. (2012). Streptococcus pyogenes SpyCEP influences host-pathogen interactions during infection in a murine air pouch model. PLoS ONE, 7, e40411.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chong, B. F., Blank, L. M., Mclaughlin, R., & Nielsen, L. K. (2005). Microbial hyaluronic acid production. Applied Microbiology and Biotechnology. doi:10.1007/s00253-004-1774-4.

    PubMed  Google Scholar 

  • Cole, J. N., Barnett, T. C., Nizet, V., & Walker, M. J. (2011). Molecular insight into invasive group a streptococcal disease. Nature Reviews Microbiology, 9(10), 724–736. doi:10.1038/nrmicro2648.

    CAS  PubMed  Google Scholar 

  • Cole, J. N., et al. (2010). M protein and hyaluronic acid are essential for in vivo selection of covRS mutations characteristic of invasive M1T1 group a Streptococcus. mBio, 1, e00191–00110.

    Google Scholar 

  • Commons, R. J., Smeesters, P. R., Proft, T., Fraser, J. D., Robins-Browne, R., & Curtis, N. (2014). Streptococcal superantigens: Categorization and clinical associations. Trends in Molecular Medicine, 20(1), 48–62. doi:10.1016/j.molmed.2013.10.004.

    CAS  PubMed  Google Scholar 

  • Courtney, H. S., Hasty, D. L., & Dale, J. B. (2002). Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. Annals of Medicine 34, 77–87.

    CAS  PubMed  Google Scholar 

  • Cremer, N., & Watson, D. (1960). Host-parasite factors in group a streptococcal infections: A comparative study of streptococcal pyrogenic toxins and gram-negative bacterial endotoxin. The Journal of Experimental Medicine, 112(6), 1037–1053.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cunningham, M. W. (2000). Pathogenesis of group A streptococcal infections. Clinical Microbiology Reviews, 13, 470–511.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dale, J. B., Penfound, T. A., Chiang, E. Y., Walton W. J. (2011). New 30-valent M protein-based vaccine evokes cross-opsonic antibodies against non-vaccine serotypes of group A streptococci. Vaccine, 29(46), 8175–8.

    Google Scholar 

  • Dale, J. B., & Chiang, E. C. (1995). Intranasal immunization with recombinant group A streptococcal M protein fragment fused to the B subunit of Escherichia coli labile toxin protects mice against systemic challenge infections. The Journal of Infectious Diseases, 171, 1038–1041.

    CAS  PubMed  Google Scholar 

  • Dano, K., Andreasen, P. A., Grondahl-Hansen, J., Kristensen, P., Nielsen, L. S., & Skriver, L. (1985). Plasminogen activators, tissue degradation, and cancer. Advances in Cancer Research, 44, 139–266.

    CAS  PubMed  Google Scholar 

  • Darenberg, J., Ihendyane, N., Sjo, J., Aufwerber, E., Haidl, S., Follin, P., et al. (2003). Intravenous immunoglobulin G therapy in streptococcal toxic shock syndrome. Clinical Infectious Diseases, 37, 333–340

    Google Scholar 

  • Darenberg, J., So, B., Normark, B. H., & Norrby-Teglund, A. (2004). Differences in Potency of Intravenous Polyspecific Immunoglobulin G against Streptococcal and Staphylococcal Superantigens : Implications for Therapy of Toxic Shock Syndrome. Clinical Infectious Diseases, 38, 836–842.

    CAS  PubMed  Google Scholar 

  • De Marzí, M. C., Fernández, M. M., Sundberg, E. J., Molinero, L., Zwirner, N. W., Llera, A. S., et al. (2004). Cloning, expression and interaction of human T-cell receptors with the bacterial superantigen SSA. European Journal of Biochemistry/FEBS, 271(20), 4075–83. doi:10.1111/j.1432-1033.2004.04345.x.

    Google Scholar 

  • Delogu, L. G., Deidda, S., Delitala, G., & Manetti, R. (2011). Infectious diseases and autoimmunity. Journal of Infection in Developing Countries. doi:10.3855/jidc.2061.

    PubMed  Google Scholar 

  • DelVecchio, A. (2002). NAD-glycohydrolase production and speA and speC distribution in group a streptococcus (GAS) isolates do not correlate with severe GAS diseases in the Australian population. Journal of Clinical Microbiology, 40, 2642–2644.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Descheemaeker, P. (2000). Molecular characterisation of group A streptococci from invasive and non-invasive disease episodes in Belgium during 1993–1994. Journal of Medical Microbiology, 49, 467–471.

    CAS  PubMed  Google Scholar 

  • Deutscher, M., Lewis, M., Zell, E. R, Taylor, T. H., Jr, Van Beneden, C., Schrag, S. (2011). Incidence and severity of invasive Streptococcus pneumoniae, group A Streptococcus, and group B Streptococcus infections among pregnant and postpartum women. Clinical Infectious Diseases, 53(2), 114–123.

    Google Scholar 

  • Dick, G. F., & Dick, G. H. (1924). The etioloy of scarlet fever. JAMA, 82(4), 301–302. doi:10.1001/jama.1924.02650300047013.

    Google Scholar 

  • Dohlsten, M., Lando, P. A., Hedlund, G., Trowsdale, J., & Kalland, T. (1990). Targeting of human cytotoxic T lymphocytes to MHC class II-expressing cells by staphylococcal enterotoxins. Immunology, 71(1), 96–100.

    Google Scholar 

  • Edwards, R. J., Taylor, G. W., Ferguson, M., Murray, S., Rendell, N., Wrigley, A., et al. (2005). Specific C-terminal cleavage and inactivation of interleukin-8 by invasive disease isolates of Streptococcus pyogenes. Journal of Infectious Diseases, 192, 783–790.

    CAS  PubMed  Google Scholar 

  • Ellis, N. M. J., Li, Y., Hildebrand, W., Fischetti, V. A., & Cunningham, M. W. (2005). T cell mimicry and epitope specificity of cross-reactive t cell clones from rheumatic heart disease. The Journal of Immunology, 175(8), 5448–5456. doi:10.4049/jimmunol.175.8.5448.

    CAS  PubMed  Google Scholar 

  • Eriksson, B. K. (1999). Invasive group A streptococcal infections: T1M1 isolates expressing pyrogenic exotoxins A and B in combination with selective lack of toxin-neutralizing antibodies are associated with increased risk of streptococcal toxic shock syndrome. Journal of Infectious Diseases, 180, 410–418.

    CAS  PubMed  Google Scholar 

  • Eurosurveillance. (2005). Eurosurveillance.

    Google Scholar 

  • Fernie-King, B. A., et al. (2001). Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes. Immunology, 103, 390–398.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferretti, J. J., et al. (2001). Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proceedings of the National Academy of Sciences USA, 98, 4658–4663.

    CAS  Google Scholar 

  • Fontana, A. (2010). Narcolepsy: Autoimmunity, effector T cell activation due to infection, or T cell independent, major histocompatibility complex class II induced neuronal loss? Brain, 133, 1300–1311.

    PubMed  Google Scholar 

  • Fraser, J., Arcus, V., Kong, P., Baker, E., & Proft, T. (2000). Superantigens—powerful modifiers of the immune system. Molecular Medicine, 6, 125–132.

    Google Scholar 

  • Friaes, A. (2012). Group A streptococci clones associated with invasive infections and pharyngitis in Portugal present differences in emm types, superantigen gene content and antimicrobial resistance. BMC Microbiology, 12, 280.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frick, I. M., Schmidtchen, A., & Sjöbring, U. (2003). Interactions between M proteins of Streptococcus pyogenes and glycosaminoglycans promote bacterial adhesion to host cells. European Journal of Biochemistry, 270(10), 2303–2311. doi:10.1046/j.1432-1033.2003.03600.x.

    CAS  PubMed  Google Scholar 

  • Gerlach, D., Knöll, H., Köhler, W., Ozegowski, J. H., & Hríbalova, V. (1983). Isolation and characterization of erythrogenic toxins. V. Communication: Identity of erythrogenic toxin type B and streptococcal proteinase precursor. Zentralbl Bakteriol Mikrobiol Hyg A, 255(2–3), 221–233.

    Google Scholar 

  • Greenwald, R. J., Freeman, G. J., & Sharpe, A. H. (2005). The B7 family revisited. Annual Review of Immunology, 23, 515–548.

    PubMed  Google Scholar 

  • Gupta-Malhotra, M. (2004). Antibodies to highly conserved peptide sequence of staphylococcal and streptococcal superantigens in Kawasaki disease. Experimental and Molecular Pathology, 76, 117–121.

    CAS  PubMed  Google Scholar 

  • Haataja, S., & Gerlach, D. (2001). The SpeB virulence factor of Streptococcus pyogenes, a multifunctional secreted and cell surface molecule with strepadhesin, laminin-binding and cysteine protease activity. Molecular Microbiology, 39, 512–519.

    PubMed  Google Scholar 

  • Haggar, A., Nerlich, A., Kumar, R., Abraham, V. J., Brahmadathan, K. N., Ray, P., et al. (2012). Clinical and microbiologic characteristics of invasive Streptococcus pyogenes infections in north and south India. Journal of Clinical Microbiology, 50(5), 1626–1631. doi:10.1128/JCM.06697-11.

  • Hedlund, G., Dohlsten, M., Petersson, C., & Kalland, T. (1993). Cancer mmunology mmunoth Papy Superantigen-based tumor therapy: In vivo activation of cytotoxic T cells. Cancer Immunology, Immunotherapy, 36, 89–93.

    CAS  PubMed  Google Scholar 

  • Herwald, H., Cramer, H., Mörgelin, M., Russell, W., Sollenberg, U., Norrby-Teglund, A., et al. (2004). M protein, a classical bacterial virulence determinant, forms complexes with fibrinogen that induce vascular leakage. Cell, 116(3), 367–379. doi:10.1016/S0092-8674(04)00057-1.

  • Hirota, K., Hashimoto, M., Yoshitomi, H., Tanaka, S., Nomura, T., Yamaguchi, T., et al. (2007). T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17 + Th cells that cause autoimmune arthritis. The Journal of Experimental Medicine, 204(1), 41–47. doi:10.1084/jem.20062259.

  • Hooker, S., & Follensby, E. (1934). Studies of scarlet fever II. different toxins produced by hemolytic streptococci of scarlatinal origin. The Journal of Immunology, 27(2), 177–193.

    CAS  Google Scholar 

  • Ikebe, W. A., Inagaki, Y., Sugama, K., Suzuki, R., Tanaka, D., Tamaru, A., et al. (2002). Dissemination of the phage-associated novel superantigen gene speL in recent invasive and noninvasive Streptococcus pyogenes M3/T3 isolates in Japan. Infection and Immunity, 70, 3227–3233.

    Google Scholar 

  • Ikebe, T., Wada, A., Inagaki, Y., Sugama, K., Suzuki, R., Tanaka, D., et al. (2002). Dissemination of the phage-associated novel superantigen gene spel in recent invasive and noninvasive streptococcus pyogenes M3/T3 isolates in Japan. Infection and Immunity, 70(6), 3227–3233. doi:10.1128/IAI.70.6.3227.

  • Imanishi, K., Igarashi, H., & Uchiyama., T. (1992). Relative abilities of distinct isotypes of human major histocompatibility complex class II molecules to bind streptococcal pyrogenic exotoxin types A and B. Infection and Immunity, 60, 5025.

    Google Scholar 

  • Jing, H. B. (2006). Epidemiological analysis of group A streptococci recovered from patients in China. Journal of Medical Microbiology, 55, 1101–1107.

    CAS  PubMed  Google Scholar 

  • Jolles, S., Sewell, W. A. C., & Misbah, S. A. (2005). Clinical uses of intravenous immunoglobulin. Clinical and Experimental Immunology, 142(1), 1–11. doi:10.1111/j.1365-2249.2005.02834.x.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones criteria. (1992). Guidelines for the diagnosis of rheumatic fever. 1992 update. JAMA, 268(15), 2063–2073.

    Google Scholar 

  • Kaempfer, R., Arad, G., Levy, R., Hillman, D., Nasie, I., & Rotfogel, Z. (2013). CD28: Direct and critical receptor for superantigen toxins. Toxins, 5, 1531–1542. doi:10.3390/toxins5091531.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalia, A., & Bessen, D. E. (2003). Presence of streptococcal pyrogenic exotoxin A and C genes in human isolates of group G streptococci. FEMS Microbiology Letters, 219(2), 291–295. doi:10.1016/S0378-1097(03)00022-3.

    CAS  PubMed  Google Scholar 

  • Kalland, T., Dohlsten, M., Lind, P., Sundstedt, A., Abrahmsen, L., Hedlund, G., et al. (1993). Monoclonal antibodies and superantigens: A novel therapeutic approach. Medical Oncology & Tumor Pharmacotherapy, 10, 37–47.

    Google Scholar 

  • Kalland, T., Hedlund, G., Dohlsten, M., & Lando, P. A. (1991). Staphylococcal enterotoxin-dependent cell-mediated cytotoxicity. Current Topics in Microbiology and Immunology, 174, 81–92.

    CAS  PubMed  Google Scholar 

  • Kamezawa, Y., Nakahara, T., Nakano, S., Abe, Y., Nozaki-renard, J., & Isono, T. (1997). Streptococcal Mitogenic Exotoxin Z, a Novel Acidic Superantigenic Toxin Produced by a T1 Strain of Streptococcus pyogenes. Infection and Immunity, 65(9), 3828–3833.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kapur, V., Nelson, K., Schlievert, P. M., Selander, R. K., & Musser, J. M. (1992). Molecular population genetic-evidence of horizontal spread of 2 alleles of the pyrogenic exotoxin-C gene (spec) among pathogenic clones of streptococcus-pyogenes. Infection and Immunity, 60(9), 3513–3517.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katz, U., Shoenfeld, Y., & Zandman-Goddard, G. (2011). Update on Intravenous Immunoglobulins (IVIg) Mechanisms of Action and Off- Label use in Autoimmune Diseases. Current Pharmaceutical Design,. doi:10.2174/138161211798157540.

    PubMed  Google Scholar 

  • Kaul, R., Mcgeer, A., Norrby-Teglund, A., Kotb, M., Schwartz, B., Rourke, K. O., et al. (1995). intravenous immunoglobulin therapy for streptococcal toxic shock syndrome—a comparative observational study. Clinical Infectious Diseases, 28, 800–807.

    Google Scholar 

  • Kawabe, Y., & Ochi, A. (1991). Programmed cell death and extrathymic reduction of Vb81 CD41 T cells in mice tolerant to Staphylococcus aureus enterotoxin B. Nature, 349, 245–248.

    CAS  PubMed  Google Scholar 

  • Kotb, M. (1995). Bacterial Pyrogenic Exotoxins as Superantigens. Clinical Microbiology Reviews, 8(3), 411–426.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kotb, M., Norrby-Teglund, A., Mcgeer, A., El-Sherbini, H., Dorak, M. T., Kurshid, A., et al. (2002). An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nature Medicine, 8(12). doi:10.1038/nm.

  • Kumar, R. K., & Tandon, R. (2013). Rheumatic fever & rheumatic heart disease: The last 50 years. The Indian Journal of Medical Research, 137(4), 643–658.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lamagni, T. L., Darenberg, J., Luca-Harari, B., Siljander, T., Efstratiou, A., Henriques-Normark, B., et al. (2008). Epidemiology of severe Streptococcus pyogenes disease in Europe. Journal of Clinical Microbiology, 46(7), 2359–67. doi:10.1128/JCM.00422-08.

  • Lamagni, T. L., Efstratiou, A., Vuopio-Varkila, J., Jasir, A., & Schalén, C. (2005). The epidemiology of severe Streptococcus pyogenes associated disease in Europe. Euro Surveillance: Bulletin Européen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin.

    Google Scholar 

  • Lancefield, R. C. (1928). The antigenic complex of Streptococcus hemolyticus. I. Demonstration of a type-specific substance in extracts of Streptococcus hemolyticus. Journal of Experimental Medicine, 47, 91–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lancefield, R. C., & Dole, V. P. (1946). The properties of T antigen extracted from group A hemolytic streptococci. Journal of Experimental Medicine, 84(5), 449–71.

    Google Scholar 

  • Lando, P. A., Hedlund, G., Dohlsten, M., & Kalland, T. (1991). Bacterial superantigens as anti-tumour agents: induction of tumour cytotoxicity in human lymphocytes by staphylococcal enterotoxin A. Cancer Immunology, Immunotherapy, 33, 231–237.

    CAS  PubMed  Google Scholar 

  • Lebedeva, T., Dustin, M. L., & Sykulev, Y. (2005). ICAM-1 co-stimulates target cells to facilitate antigen presentation. Current Opinion in Immunology. doi:10.1016/j.coi.2005.04.008.

    PubMed  Google Scholar 

  • LeFebvre, D. (2008). History of Streptococcus Pyogenes.

    Google Scholar 

  • Lei, B., DeLeo, F. R., Reid, S. D., Voyich, J. M., Magoun, L., Liu, M., et al. (2002). Opsonophagocytosis-inhibiting mac protein of group a streptococcus: identification and characteristics of two genetic complexes. Infection and Immunity, 70(12), 6880–90.

    Google Scholar 

  • Leung, D. Y. (1993). A potential role for superantigens in the pathogenesis of psoriasis. Journal of Investigative Dermatology, 100, 225–228.

    CAS  PubMed  Google Scholar 

  • Li, P., Tiedemann, R. E., Moffat, S. L., & Fraser, J. D. (1997). The Superantigen streptococcal pyrogenic exotoxin C (SpeC) exhibits novel mode of action. Journal of Experimental Medicine, 186(3), 375–383.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li, Y., Li, H., Dimasi, N., McCormick, J. K., Martin, R., Schuck, P., et al. (2001). Crystal structure of a superantigen bound to the high-affinity, zinc-dependent site on MHC class II. Immunity, 14(1), 93–104. doi:10.1016/S1074-7613(01)00092-9.

  • Liu, M., Lu, L., Sun, R., Zheng, Y., & Zhang, P. (2015). Rheumatic heart disease: Causes, symptoms, and treatments. Cell Biochemistry and Biophysics. doi:10.1007/s12013-015-0552-5.

    PubMed Central  Google Scholar 

  • Llewelyn, M., Sriskandan, S., Peakman, M., Ambrozak, D. R., Douek, D. C., Kwok, W. W., et al. (2004). HLA class II polymorphisms determine responses to bacterial superantigens. Journal of Immunology (Baltimore, Md.: 1950), 172(3), 1719–1726. doi:10.4049/jimmunol.172.3.1719.

  • Madden, J. C., Ruiz, N., & Caparon, M. (2001). Cytolysinmediated translocation (CMT): A functional equivalent of type III secretion in Gram-positive bacteria. Cell, 104, 143–152.

    CAS  PubMed  Google Scholar 

  • Marrack, P., & Kappler, J. (1990). Staphylococcal enterotoxins and their relatives. Science, 248, 704–711.

    Google Scholar 

  • Matsubara, K. (2006). Development of serum IgM antibodies against superantigens of Staphylococcus aureus and Streptococcus pyogenes in Kawasaki disease. Clinical and Experimental Immunology, 143, 427–434.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCormick, J. K., Yarwood, J. M., & Schlievert, P. (2001). Toxic shock syndrome and bacterial superantigens: An update. Annual Review of Microbiology, 55, 77–104.

    CAS  PubMed  Google Scholar 

  • McArthur, J. D., McKay, F. C., Ramachandran, V., Shyam, P., Cork, A. J., Sanderson-Smith, M. L., et al. (2008). Allelic variants of streptokinase from Streptococcus pyogenes display functional differences in plasminogen activation. The FASEB Journal, 22(9), 3146–53.

    Google Scholar 

  • Metzgar, D., & Zampolli, A. (2011). The M protein of group A Streptococcus is a key virulence factor and a clinically relevant strain identification marker. Virulence, 2(5), 402–412.

    Google Scholar 

  • Mollick, J. A., Miller, G. G., Musser, J. M., Cook, R. G., Grossman, D., & Rich, R. R. (1993). A novel superantigen isolated from pathogenic strains of streptococcus pyogenes with aminoterminal homology to staphylococcal enterotoxins B and C. Journal of Clinical Investigation, 92(August), 710–719.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mouthon, L., Kaveri, S., Spalter, S., Lacroix-Desmazes, S., Lefranc, C., Desai, R., & Kazatchkine, M. (1996). Mechanisms of action of intravenous immune globulin in immune-mediated diseases. Clinical and Experimental Immunology, 104 Suppl(May), 3–9.

    Google Scholar 

  • Murakami, J. (2002). Distribution of emm genotypes and superantigen genes of Streptococcus pyogenes isolated in Japan 1994–1999. Epidemiology and Infection, 128, 397–404.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murzin, A. G. (1993). OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. The EMBO Journal, 12(3), 861–867.

    Google Scholar 

  • Musser, J. M. (1991). Streptococcus pyogenes causing toxic-shock- like syndrome and other invasive diseases: clonal diversity and pyrogenic exotoxin expression. Proceedings of the National Academy of Sciences, 88, 2668–2672.

    CAS  Google Scholar 

  • Mylvaganam, H. (2000). Distribution and sequence variations of selected virulence genes among group A streptococcal isolates from western Norway. APMIS, 108, 771–778.

    CAS  PubMed  Google Scholar 

  • Nilsson, M., Sorensen, O. E., Morgelin, M., Weineisen, M., Sjobring, U., & Herwald, H. (2006). Activation of human polymorphonuclear neutrophils by streptolysin O from Streptococcus pyogenes leads to the release of proinflammatory mediators. Thrombosis and Haemostasis, 95(6), 982–990. doi:10.1160/TH05-08-0572.

    CAS  PubMed  Google Scholar 

  • Nobbs, A. H., Lamont, R. J., & Jenkinson, H. F. (2009). Streptococcus adherence and colonization. Microbiology and Molecular Biology Reviews, 73, 407–450.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nomura, Y. (2002). Maternal antibody against toxic shock syndrome toxin-1 may protect infants younger than 6 months of age from developing Kawasaki syndrome. Journal of Infectious Diseases, 185, 1677–1680.

    CAS  PubMed  Google Scholar 

  • Normark, B. H., & Normark, S. (2002). Hosting for the cuel and the inconsequential. Nature Medicine, 8(12), 1398–1404. doi:10.1038/nm1202-1350.

    Google Scholar 

  • Norrby-Teglund, A., Ihendyane, N., Kansal, R., Basma, H., Kotb, M., Andersson, J., & Hammarstro, L. (2000). Relative neutralizing activity in polyspecific IgM, IgA, and IgG preparations against group A streptococcal superantigens. Clinical Infectious Diseases, 31, 1175–1182.

    CAS  PubMed  Google Scholar 

  • Norrby-Teglund, A., Muller, M. P., Mcgeer, A., Gan, B. S., Guru, V., Bohnen, J., et al. (2005). Successful management of severe group A streptococcal soft tissue infections using an aggressive medical regimen including intravenous polyspecific immunoglobulin together with a conservative surgical approach. Scandinavian Journal of Infectious Diseases, 37(3), 166–172. doi:10.1080/00365540410020866.

  • Norrby-Teglund, A., Nepom, G., & Kotb, M. (2002). Differential presentation of group A streptococcal superantigens by HLA class II DQ and DR alleles. European Journal of Immunology, 32(9), 2570–2577.

    CAS  PubMed  Google Scholar 

  • Papageorgiou, A. C., & Acharya, K. (2000). Microbial superantigens: From structure to function. Trends in Microbiology, 8, 369–375.

    CAS  PubMed  Google Scholar 

  • Patel, R., Rouse, M. S., Florez, M. V., Piper, K. E., Cockerill, F. R., Wilson, W. R., & Steckelberg, J. M. (2000). Lack of benefit of intravenous immune globulin in a murine model of group A streptococcal necrotizing fasciitis. The Journal of Infectious Diseases, 181(1), 230–234.

    CAS  PubMed  Google Scholar 

  • Patterson, K. G., Pittaro, J. L. D., Bastedo, P. S., Hess, D. A., Haeryfar, S. M. M., & McCormick, J. K. (2014). Control of established colon cancer xenografts using a novel humanized single chain antibody-streptococcal superantigen fusion protein targeting the 5t4 oncofetal antigen. PLoS ONE, 9(4). doi:10.1371/journal.pone.0095200.

  • Pichichero, M. E., & Casey, J. R. (2007). Systematic review of factors contributing to penicillin treatment failure in Streptococcus pyogenes pharyngitis. Otolaryngology—Head and Neck Surgery, 137(6), 851–851.e3.

    Google Scholar 

  • Ponting, C. P., Marshall, J. M., & Cederholm-Williams, S. (1992). Plasminogen: A structural review. Blood Coagulation and Fibrinolysis, 3, 605–614.

    CAS  PubMed  Google Scholar 

  • Poutsiaka, D. D., Clark, B. D., Vannier, E., & Dinarello, C. A. (1991). Production of interleukin-1 receptor antagonist and interleukin-1 beta by peripheral blood mononuclear cells is differentially regulated. Blood, 78(5), 1275–1281.

    Google Scholar 

  • Prlic, M., & Jameson, S. C. (2002). Homeostatic expansion versus antigen-driven proliferation: Common ends by different means? Microbes and Infection. doi:10.1016/S1286-4579(02)01569-1.

    PubMed  Google Scholar 

  • Proft, B. T., Moffatt, S. L., Berkahn, C. J., & Fraser, J. D. (1999). Identification and Characterisation of Novel Superantigens from Streptococcus pyogenes. Journal of Experimental Medicine, 189(1), 89–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Proft, B. T., Moffatt, S. L., Weller, K. D., Paterson, A., Martin, D., & Fraser, J. D. (2000). Wide Allelic Variation, Mosaic Structure, and Significant Antigenic Variation. Journal of Experimental Medicine, 191(10), 1765–1776.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Proft, T., & Fraser, J. D. (2007). Streptococcal superantigens. In Supernantigens anf Superallergens (Vol. 93, pp. 1–23).

    Google Scholar 

  • Proft, T., Webb, P. D., Handley, V., & Fraser, J. D. (2003a). Two novel superantigens found in both group A and group C Streptococcus. Infection and Immunity, 71(3), 1361–1369. doi:10.1128/IAI.71.3.1361.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Proft, T., Yang, L., Fraser, J. D., & Sriskandan, S. (2003b). Superantigens and Streptococcal Toxic Shock Syndrome. Emerging Infectious Diseases, 9(10), 1211–1218.

    Google Scholar 

  • Qian, J., Stenger, B., Wilson, C. A., Lin, J., Jansen, R., Teichmann, S. A., et al. (2001). PartsList: a web-based system for dynamically ranking protein folds based on disparate attributes, including whole-genome expression and interaction information. Nucleic Acid Research, 29(8), 1750–1764.

    Google Scholar 

  • Rapini, R. P., Bolognia, J. L., Jorizzo, J. L. (2007). Dermatology.

    Google Scholar 

  • Reda, K. (1994). Molecular characterization and phylogenetic distribution of the streptococcal superantigen gene (ssa) from Streptococcus pyogenes. Infection and Immunity, 62, 1867–1874.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Redpath, S., Alam, S. M., Lin, C. M., O’Rourke, A. M., & Gascoigne, N. R. (1999). Cutting edge: Trimolecular interaction of TCR with MHC class II and bacterial superantigen shows a similar affinity to MHC:peptide ligands. Journal of Immunology (Baltimore, Md.: 1950), 163(1), 6–10.

    Google Scholar 

  • Reid, S. D., Hoe, N. P., Smoot, L. M., & Musser, J. M. (2001). Group A Streptococcus: allelic variation, population genetics, and host-pathogen interactions. Journal of Clinical Investigation, 107(4), 393–399. doi:10.1172/JCI11972.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riley, J. L., & June, C. (2005). The CD28 family: A T-cell rheostat for therapeutic control of T-cell activation. Blood, 105, 13–21.

    CAS  PubMed  Google Scholar 

  • Rodriguez-Iturbe, B., & Musser, J. M. (2008). The current state of poststreptococcal glomerulonephritis. Journal of the American Society of Nephrology, 19(10), 1855–1864.

    Google Scholar 

  • Rogers, S., Commons, R., Danchin, M. H., Selvaraj, G., Kelpie, L., Curtis, N., et al. (2007). Strain prevalence, rather than innate virulence potential, is the major factor responsible for an increase in serious group A streptococcus infections. The Journal of Infectious Diseases, 195(11), 1625–1633. doi:10.1086/513875.

  • Roussel, A., Anderson, B. F., Baker, H. M., Fraser, J. D., & Baker, E. N. (1997). Crystal structure of the streptococcal superantigen SPE-C: dimerization and zinc binding suggest a novel mode of interaction with MHC class II molecules. Nature Structural & Molecular Biology, 4, 635–643.

    CAS  Google Scholar 

  • Ruiz De Souza, V., Carreno, M. P., Kaveri, S. V., Ledur, A., Sadeghi, H., Cavaillon, J. M., et al. (1995). Selective induction of interleukin-1 receptor antagonist and interleukin-8 in human monocytes by normal polyspecific IgG (intravenous immunoglobulin). European Journal of Immunology, 25(5), 1267–1273. doi:10.1002/eji.1830250521.

  • Schrage, B., Duan, G., Yang, L. P., Fraser, J. D., & Proft, T. (2006). Different preparations of intravenous immunoglobulin vary in their efficacy to neutralize streptococcal superantigens: implications for treatment of streptococcal toxic shock syndrome. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 43(6), 743–746. doi:10.1086/507037.

    Google Scholar 

  • Schrager H. M., Alberti, S., Cywes, C., Dougherty, G. J., Wessels, M. R. (1998). Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A streptococcus to CD44 on human keratinocytes. Journal of Clinical Investigation, 101, 1708–1716.

    Google Scholar 

  • Schwartz, J. C., Zhang, X., Fedorov, A. A., Nathenson, S. G., & Almo, S. (2001). Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature, 410, 604–608.

    CAS  PubMed  Google Scholar 

  • Schwartz, R. H. (2003). T Cell Anergy. Annual Review of Immunology, 21, 305–334. doi:10.1146/annurev.immunol.20.100301.064807.

    CAS  PubMed  Google Scholar 

  • Shaikh, N., Leonard, E., Martin, J. M. (2010). Prevalence of streptococcal pharyngitis and streptococcal carriage in children: a meta-analysis. Pediatrics, 126(3), e557–64. doi:10.1542/peds.2009-2648.

  • Sharma, P., Wang, N., & Kranz, D. M. (2014). Soluble T cell receptor Vβ domains engineered for high-affinity binding to staphylococcal or streptococcal superantigens. Toxins, 6(2), 556–574. doi:10.3390/toxins6020556.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharpe, A. H., & Freeman, G. J. (2002). The B7-CD28 superfamily. Nature Reviews Immunology, 2(2), 116–126. doi:10.1038/nri727.

    CAS  PubMed  Google Scholar 

  • Shiobara, N. (2007). Bacterial superantigens and T cell receptor b-chain-bearing T cells in the immunopathogenesis of ulcerative colitis. Clinical and Experimental Immunology, 150, 13–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skansén-Saphir, U., Andersson, J., Björk, L., & Andersson, U. (1994). Lymphokine production induced by streptococcal pyrogenic exotoxin-A is selectively down-regulated by pooled human IgG. European Journal of Immunology, 24(4), 916–922. doi:10.1002/eji.1830240420.

    PubMed  Google Scholar 

  • Smoot, L. M., et al. (2002). Characterization of two novel pyrogenic toxin superantigens made by an acute rheumatic fever clone of Streptococcus pyogenes associated with multiple disease outbreaks. Infection and Immunity, 70, 7095–7104.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sottini, A., Imberti, L., Gorla, R., Cattaneo, R., & Primi, D. (1991). Restricted expression of T cell receptor Vb but not Va genes in rheumatoid arthritis. European Journal of Immunology, 21, 461–466.

    CAS  PubMed  Google Scholar 

  • Sriskandan, S., Unnikrishnan, M., Krausz, T., Dewchand, H., Noorden, S. Van, Cohen, J., & Altmann, D. M. (2001). Enhanced susceptibility to superantigenassociated streptococcal sepsis in human leukocyte antigen-DQ transgenic mice. Journal of Infectious Diseases, 184, 166.

    Google Scholar 

  • Steer, A. C., Batzloff, M. R., Mulholland, K., & Carapetis, J. R. (2009). Group A streptococcal vaccines: facts versus fantasy. Current Opinion in Infectious Diseases, 22(6), 544–552. doi:10.1097/QCO.0b013e328332bbfe.

    CAS  PubMed  Google Scholar 

  • Steven, D. L. (1992). Invasive group A Streptococcus infections. Clinical Infectious Diseases, 173, 619–626.

    Google Scholar 

  • Stock, A., & Lynn, R. (1969). Extracellular esterases of streptococci and the distribution of specific antibodies in human sera of various age groups. Journal of Immunology, 102(4), 859–869.

    CAS  Google Scholar 

  • Sumby, P., Whitney, A. R., Graviss, E. A., Deleo, F. R., & Musser, J. M. (2006). Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLOS Pathogens, 2, e5.

    PubMed Central  PubMed  Google Scholar 

  • Sundberg, H., Li, A. S., Llera, J. K., McCormick, J., Tormo, P. M., Schlievert, K., Karjalainen, R. A., & Mariuzza, E. J. (2002). Structures of two streptococcal superantigens bound to TCR-beta chains reveal diversity in the architecture of T cell signaling complexes. Structure, 10, 687–699.

    Google Scholar 

  • Sundberg, E. J., Li, H., Llera, A. S., McCormick, J. K., Tormo, J., Schlievert, P. M., et al. (2002). Structures of two streptococcal superantigens bound to TCR-beta chains reveal diversity in the architecture of T cell signaling complexes. Structure, 10, 687–699.

    Google Scholar 

  • Talkington, D. (1993). Association of phenotypic and genotypic characteristics of invasive Streptococcus pyogenes isolates with clinical components of streptococcal toxic shock syndrome. Infection and Immunity, 61, 3369–3374.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. doi:10.1093/nar/22.22.4673.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Timmer, A. M., et al. (2009). Streptolysin O promotes group A Streptococcus immune evasion by accelerated macrophage apoptosis. Journal of Biological Chemistry, 284, 862–871.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torres, B. A., Kominsky, S., Perrin, G. Q., Hobeika, A. C., & Johnson, H. M. (2001). Superantigens: the good, the bad, and the ugly. Experimental Biology and Medicine (Maywood, N.J.), 226(3), 164–176.

    Google Scholar 

  • Travers, J. (1999). Epidermal HLA-DR and the enhancement of cutaneous reactivity to superantigenic toxins in psoriasis. Journal of Clinical Investigation, 104, 1181–1189.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tripathi, A. (2004). Immunoglobulin E to staphylococcal and streptococcal toxins in patients with chronic sinusitis/nasal polyposis. Laryngoscope, 114, 1822–1826.

    CAS  PubMed  Google Scholar 

  • Tripp, T. J., McCormick, J. K., Webb, J. M., & Schlievert, P. M. (2003). The Zinc-Dependent major histocompatibility complex class II binding site of streptococcal pyrogenic exotoxin C is critical for maximal superantigen function and toxic activity. Infection and Immunity, 71(3), 1548–1550. doi:10.1128/IAI.71.3.1548-1550.2003.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turner, C. (2012). Superantigenic activity of emm3 Streptococcus pyogenes is abrogated by a conserved, naturally occurring smeZ mutation. PLoS One, 7, e46376.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turner, C., & Sriskandan, S. (2007). Streptococcus pyogenes under pressure. Nature Medicine, 13(8), 909–910

    Google Scholar 

  • Uchiyama, S., Andreoni, F., Schuepbach, R. A., Nizet, V., & Zinkernagel, A. S. (2012). DNase Sda1 allows invasive M1T1 Group A Streptococcus to prevent TLR9-dependent recognition. PLoS Pathogens, 8(6), e1002736.

    Google Scholar 

  • Weisman, L. E., Cruess, D. F., & Fischer, G. W. (1994). Opsonic activity of commercially available standard intravenous immunoglobulin preparations. Pediatric Infectious Disease, 13, 1122–1125.

    CAS  Google Scholar 

  • Wilson, B. (1952). Necrotising Fasciitis. American Journal of Surgery, 18(4), 416–431.

    CAS  Google Scholar 

  • Yoshioka, T. (1999). Polyclonal expansion of TCRBV2- and TCRBV6-bearing T cells in patients with Kawasaki disease. Immunology, 96, 465–472.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshioka, T. (2003). Relation of streptococcal pyrogenic exotoxin C as a causative superantigen for Kawasaki disease. Pediatric Research, 53, 403–410.

    CAS  PubMed  Google Scholar 

  • Zhang, C., & Kim, S. H. (2000). A comprehensive analysis of the Greek key motifs in protein beta-barrels and beta-sandwiches. Proteins: Structure, Function and Genetics, 40(March), 409–419. doi:10.1002/1097-0134(20000815)40:3<409::AID-PROT60>3.0.CO;2-6.

  • Zingaretti, C., Falugi, F., Nardi-Dei, V., Pietrocola, G., Mariani, M., Liberatori, S., et al. (2010). Streptococcus pyogenes SpyCEP: A chemokine-inactivating protease with unique structural and biochemical features. FASEB Journal, 24, 2839–2848.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Babbar, A. (2015). Streptococcal Superantigens. In: Streptococcal Superantigens. SpringerBriefs in Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-22455-8_1

Download citation

Publish with us

Policies and ethics