Skip to main content

Experimental and Numerical Analysis of Pressure Waves Propagation in a Viscoelastic Hopkinson Bar

  • Conference paper
Book cover Dynamic Behavior of Materials, Volume 1

Abstract

In this paper, the viscoelastic behaviour of PET is assessed in order to study the wave propagation in long SHPB made of polymeric materials.

First, an analytical formulation and a numerical FE model were set up and validated using viscoelastic parameters borrowed from literature. However, for a correct description of the attenuation factor and the complex wave number of the real PET material, the storage and loss moduli as functions of the frequency must be known. For this reason, DTMA tests have been conducted at different temperatures and frequency; the experimental curves have been shifted, extrapolating the storage and loss master functions up to 100 kHz, and used for identifying the stiffness and damping parameters of a generalized Maxwell model. Then, these parameters were implemented into the numerical model for simulating the wave propagation in long bars. The numerical results are compared with the real wave signals measured from experiments performed on a SHPB made of the same PET material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song, B., Chen, W.: Split Hopkinson Kolsky Bar: Design, Testing and Applications. Springer, New York (2010)

    Google Scholar 

  2. Wang, L., Labibes, K., Azari, Z., Pluvinage, G.: Generalization of split Hopkinson bar technique to use viscoelastic bars. Int. J. Impact Eng. 15(5), 669–686 (1994)

    Article  Google Scholar 

  3. Cronin, D., Salisbury C., Horst, C.: High Rate Characterization of Low Impedance Materials Using a Polymeric Split Hopkinson Pressure Bar. In: Proceedings of SEM annual conference, St Louis (2006)

    Google Scholar 

  4. Kolsky, H.: Stress waves in solids. Dover, New York (1963)

    Google Scholar 

  5. Cheng, Z., Crandall, J., Pilkey, W.: Wave dispersion and attenuation in viscoelastic split Hopkinson pressure bar. Shock. Vib. 5, 307–315 (1998)

    Article  Google Scholar 

  6. Zhao, H., Gary, G., Klepaczko, J.: On the use of a viscoelastic split hopkinson pressure bar. Int. J. Impact Eng. 19(4), 319–330 (1997)

    Article  Google Scholar 

  7. Benatar, A., Rittel, D., Yarin, A.: Theoretical and experimental analysis of longitudinal wave propagation in cylindrical viscoelastic rods. J. Mech. Phys. Solids 51, 1413–1431 (2003)

    Article  Google Scholar 

  8. Ahonsi, B., Harrigan, J., Aleyaasin, M.: On the propagation coefficient of longitudinal stress waves in viscoelastic bars. Int. J. Impact Eng. 45, 39–51 (2012)

    Article  Google Scholar 

  9. Aleyaasin, M., Harrigan, J.: Wave dispersion and attenuation in viscoelastic polymeric bars: Analysing the effect of lateral inertia. Int. J. Mech. Sciences 52, 754–757 (2010)

    Article  Google Scholar 

  10. Bacon, C.: An Experimental Method for Considering Dispersion and Attenuation in a Viscoelastic Hopkinson Bar. Experimental Mechanics 38(4), 242–249 (1998)

    Article  Google Scholar 

  11. Lundberg, B., Blanc, R.: Determination of mechanical material properties from the two-point response of an impacted linearly viscoelastic rod specimen. J. Sound Vib. 126, 97–108 (1988)

    Article  Google Scholar 

  12. Blanc, R.: Transient wave propagation methods for determining the viscoelastic properties of solids. J. Appl. Mech. Trans. ASME 60(3), 763–768 (1993)

    Article  Google Scholar 

  13. Mousavi, S., Nicolas, D., Lundberg, B.: Identification of complex moduli and Poisson’s ratio from measured strains on an impacted bar. J. Sound Vib. 277, 971–986 (2004)

    Article  Google Scholar 

  14. Mossberg, M.: Parametric identification of viscoelastic materials from time and frequency domain data. Inverse Prob. Eng. 9, 37–41 (2001)

    Article  Google Scholar 

  15. Butt, H., Xue, P.: Determination of the wave propagation coefficient of viscoelastic SHPB: significance for characterization of cellular materials. Int. J. Impact Eng. (2013). doi:10.1016/j.ijimpeng.2013.11.010

    Google Scholar 

  16. Rensfelt, A., Söderström, T.: Parametric identification of complex modulus. Automatica 47, 813–818 (2011)

    Article  Google Scholar 

  17. Tschoegl, N.: The Phenomenological Theory of Linear Viscoelastic Behavior. Springer, Berlin (1989)

    Book  Google Scholar 

  18. Brinson, H., Brinson, L.: Polymer Engineering Science and Viscoelasticity—An Introduction. Springer, Berlin (2008)

    Book  Google Scholar 

  19. Bagley, R., Torvik, P.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, 133–155 (1986)

    Article  Google Scholar 

  20. Atanackovic, T., Stankovic, B.: Dynamics of viscoelastic rod of fractional derivative type. J. Appl. Math. Mech. 82, 377–386 (2002)

    Google Scholar 

  21. Sasso, M., Palmieri, G., Amodio, D.: Application of fractional derivative models in linear viscoelastic problems. Mech. Time-Depend. Mater. 15, 367–387 (2011)

    Article  Google Scholar 

  22. Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9(4), 295–310 (1969)

    Article  Google Scholar 

  23. Alfrey, T.: Nonhomogeneous stress in viscoelastic media. Q. J. Appl. Mat. 21(113), 113–119 (1944)

    Google Scholar 

  24. Foreman, J.: Dynamic mechanical analysis of polymers. Am. Lab. 29(1), 21–24 (1997)

    Google Scholar 

  25. Menard, K.: Dynamic Mechanical Analysis: A Practical Introduction. CRC Press, Boca Raton (1999)

    Book  Google Scholar 

  26. Ferry, J.: Viscoelasic Properties of Polymers, 3rd edn. Wiley, New York (1980)

    Google Scholar 

  27. Williams, M., Landel, R., Ferry, J.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

  28. Brostow, W., D’Souza, N., Kubat, J., Maksimov, R.: Creep and stress relaxation in a longitudinal polymer liquid crystal: Prediction of the temperature shift factor. J. Chem. Phys. 110(19), 9706–9712 (1999)

    Article  Google Scholar 

  29. Nair, T., Kumaran, M., Unnikrishnan, G., Pillai, V.: Dynamic mechanical analysis of ethylene–propylene–diene monomer rubber and styrene–butadiene rubber blends. J. Appl. Polym. Sci. 112(1), 72–81 (2009)

    Article  Google Scholar 

  30. Bhushan, B., Ma, T., Higashioji, T.: Tensile and dynamic mechanical properties of Improved ultrathin polymeric films. J. Appl. Polym. Sci. 83(10), 2225–2244 (2002)

    Article  Google Scholar 

  31. Daga, V.K., Wagner, N.J.: Linear viscoelastic master curves of neat and laponite-filled poly(ethylene oxide)-water solutions. Rheol. Acta 45, 813–824 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sasso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Sasso, M., Antonelli, M.G., Mancini, E., Radoni, M., Amodio, D. (2016). Experimental and Numerical Analysis of Pressure Waves Propagation in a Viscoelastic Hopkinson Bar. In: Song, B., Lamberson, L., Casem, D., Kimberley, J. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-22452-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22452-7_36

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22451-0

  • Online ISBN: 978-3-319-22452-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics