Skip to main content

Correlation of Microscale Deformations to Macroscopic Mechanical Behavior Using Incremental Digital Volume Correlation of In-Situ Tomography

  • Conference paper

Abstract

An incremental digital volume correlation (DVC) technique was developed to measure large nonlinear deformations on volumetric images acquired using X-ray micro-computed tomography (μ-CT). A series of bridging volumetric images are acquired during the loading of a specimen. The deformation in the neighboring images is sufficiently small to allow DVC calculation. The displacements are accumulated, and analyzed to determine their gradients for deformation measurements. The technique was applied for observation of internal deformations of Polymethacrylimide (PMI) foam, polymer bonded sugar (PBS), and granular materials in compression experiencing large nonlinear deformations. When PMI foam underwent compression, 17 states of the PMI were captured and large nonlinear deformations were observed. The PBS cylindrical specimen, in which sugar grains are embedded in hydroxylterminated polybutadiene (HTPB) binder matrix, was compressed up to 32 % of compressive strain without confinement. The debonding evolution was observed and discussed. On granular materials, a methodology was developed to determine for the force chains. These applications demonstrate that incremental DVC is a powerful technique for linking the microstructure with macroscopic mechanical behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B.K. Bay, T.S. Smith, D.P. Fyhrie, M. Saad, Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp. Mech. 39(3), 217–226 (1999)

    Article  Google Scholar 

  2. N. Lenoir, M. Bornert, J. Desrues, P. Bésuelle, G. Viggiani, Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43(3), 193–205 (2007)

    Article  Google Scholar 

  3. L. Liu, E.F. Morgan, Accuracy and precision of digital volume correlation in quantifying displacements and strains in trabecular bone. J. Biomech. 40(15), 3516–3520 (2007)

    Article  Google Scholar 

  4. T.S. Smith, B.K. Bay, M.M. Rashid, Digital volume correlation including rotational degrees of freedom during minimization. Exp. Mech. 42(3), 272–278 (2002)

    Article  Google Scholar 

  5. R. Zauel, Y.N. Yeni, B.K. Bay, X.N. Dong, D.P. Fyhrie, Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements. J. Biomech. Eng.Trans. ASME 128(1), 1–6 (2006)

    Article  Google Scholar 

  6. O. Jirousek, I. Jandejsek, D. Vavrik, Evaluation of strain field in microstructures using micro-CT and digital volume correlation. J. Instrum. 6, C01039 (2011)

    Article  Google Scholar 

  7. S.A. Maskarinec, C. Franck, D.A. Tirrell, G. Ravichandran, Quantifying cellular traction forces in three dimensions. Proc. Natl. Acad. Sci. 106(52), 22108 (2009)

    Article  Google Scholar 

  8. C. Franck, S. Hong, S.A. Maskarinec, D.A. Tirrell, G. Ravichandran, Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp. Mech. 47(3), 427–438 (2007)

    Article  Google Scholar 

  9. F. Forsberg, R. Mooser, M. Arnold, E. Hack, P. Wyss, 3D micro-scale deformations of wood in bending: synchrotron radiation mu CT data analyzed with digital volume correlation. J. Struct. Biol. 164(3), 255–262 (2008)

    Article  Google Scholar 

  10. A. Germaneau, P. Doumalin, J.C. Dupre, Comparison between X-ray micro-computed tomography and optical scanning tomography for full 3D strain measurement by digital volume correlation. NDT & E Int. 41(6), 407–415 (2008)

    Article  Google Scholar 

  11. F. Forsberg, C.R. Siviour, 3D deformation and strain analysis in compacted sugar using x-ray microtomography and digital volume correlation. Meas. Sci. Technol. 20(9), 095703 (2009)

    Article  Google Scholar 

  12. S. Roux, F. Hild, P. Viot, D. Bernard, Three-dimensional image correlation from X-ray computed tomography of solid foam. Compos. A: Appl. Sci. Manuf. 39(8), 1253–1265 (2008)

    Article  Google Scholar 

  13. F. Forsberg, M. Sjodahl, R. Mooser, E. Hack, P. Wyss, Full three-dimensional strain measurements on wood exposed to three-point bending: analysis by use of digital volume correlation applied to synchrotron radiation micro-computed tomography image data. Strain 46(1), 47–60 (2010)

    Article  Google Scholar 

  14. Z. Hu, H. Luo, W. Young, H. Lu, Incremental digital volume correlation for large deformation measurement of PMI foam in compression, in ASME 2012 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, Houston, TX, 2012

    Google Scholar 

  15. Z. Hu, H. Luo, H. Lu, Observation of the Microstructural Evolution in a Structural Polymeric Foam Using Incremental Digital Volume Correlation, in Advancement of Optical Methods in Experimental Mechanics, ed. by H. Jin et al., vol. 3 (Springer, Cham, 2014), pp. 159–166

    Chapter  Google Scholar 

  16. S. Hall, M. Bornert, J. Desrues, Y. Pannier, N. Lenoir, G. Viggiani, P. Bésuelle, Discrete and continuum analysis of localised deformation in sand using X-ray mu CT and volumetric digital image correlation. Geotechnique 60(5), 315–322 (2010)

    Article  Google Scholar 

  17. Z. Hu, Y. Du, H. Luo, B. Zhong, H. Lu, Internal deformation measurement and force chain characterization of mason sand under confined compression using incremental digital volume correlation. Exp. Mech. 54(9), 1575–1586 (2014)

    Article  Google Scholar 

  18. Z. Hu, H. Luo, S.G. Bardenhagen, C.R. Siviour, R.W. Armstrong, H. Lu, Internal deformation measurement of polymer bonded sugar in compression by digital volume correlation of in-situ tomography. Exp. Mech. 55(1), 289–300 (2015)

    Article  Google Scholar 

  19. J. Rannou, N. Limodin, J. Réthoré, A. Gravouil, W. Ludwig, M.C. Baïetto-Dubourg, J.Y. Buffière, A. Combescure, F. Hild, S. Roux, Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput. Methods Appl. Mech. Eng. 199(21–22), 1307–1325 (2010)

    Article  MATH  Google Scholar 

  20. J. Carroll, C. Efstathiou, J. Lambros, H. Sehitoglu, B. Hauber, S. Spottswood, R. Chona, Investigation of fatigue crack closure using multiscale image correlation experiments. Eng. Fract. Mech. 76(15), 2384–2398 (2009)

    Article  Google Scholar 

  21. B.K. Bay, Methods and applications of digital volume correlation. J. Strain Anal. Eng. Des. 43(8), 745–760 (2008)

    Article  Google Scholar 

  22. E. Verhulp, B. Rietbergen, R. Huiskes, A three-dimensional digital image correlation technique for strain measurements in microstructures. J. Biomech. 37(9), 1313–1320 (2004)

    Article  Google Scholar 

  23. J. Rethore, S. Roux, F. Hild, From pictures to extended finite elements: extended digital image correlation (X-DIC). Compt. Rendus Mec. 335(3), 131–137 (2007)

    Article  MATH  Google Scholar 

  24. J. Rethore, J.P. Tinnes, S. Roux, J.Y. Buffiere, F. Hild, Extended three-dimensional digital image correlation (X3D-DIC). Compt. Rendus Mec. 336(8), 643–649 (2008)

    Article  MATH  Google Scholar 

  25. H. Leclerc, J.N. Perie, S. Roux, F. Hild, Voxel-scale digital volume correlation. Exp. Mech. 51(4), 479–490 (2011)

    Article  Google Scholar 

  26. K. Haldrup, S. Nielsen, L. Mishnaevsky Jr, F. Beckmann, J. A. Wert, 3-dimensional strain fields from tomographic measurements. Proc. SPIE 6318, Developments in X-Ray Tomography V, 63181B (2006). doi: 10.1117/12.679043

    Google Scholar 

  27. M. Kobayashi, H. Toda, Y. Kawai, T. Ohgaki, K. Uesugi, D.S. Wilkinson, T. Kobayashi, Y. Aoki, M. Nakazawa, High-density three-dimensional mapping of internal strain by tracking microstructural features. Acta Mater. 56(10), 2167–2181 (2008)

    Article  Google Scholar 

  28. M. Gates, J. Lambros, M.T. Heath, Towards high performance digital volume correlation. Exp. Mech. 51(4), 491–507 (2011)

    Article  Google Scholar 

  29. M. Gates, M.T. Heath, J. Lambros, High-performance hybrid CPU and GPU parallel algorithm for digital volume correlation. Int. J. High Perform. Comput. Appl. 29, 92–106 (2014). doi: 1094342013518807

    Article  Google Scholar 

  30. Z. Hu, H. Xie, H. Lu, J. Gao, An approach to running digital volume correlation on personal computer, in 16th International Conference on Experimental Mechanics, Cambridge, UK, 2014

    Google Scholar 

  31. M. Anwander, B.G. Zagar, B. Weiss, H. Weiss, Noncontacting strain measurements at high temperatures by the digital laser speckle technique. Exp. Mech. 40(1), 98–105 (2000)

    Article  Google Scholar 

  32. B. Grant, H. Stone, P. Withers, M. Preuss, High-temperature strain field measurement using digital image correlation. J. Strain Anal. Eng. Des. 44(4), 263 (2009)

    Article  Google Scholar 

  33. R. Keys, Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  34. E.A. Flores-Johnson, Q.M. Li, R.A.W. Mines, Degradation of elastic modulus of progressively crushable foams in uniaxial compression. J. Cell. Plast. 44(5), 415–434 (2008)

    Article  Google Scholar 

  35. L. Babout, W. Ludwig, E. Maire, J.Y. Buffière, Damage assessment in metallic structural materials using high resolution synchrotron X-ray tomography. Nucl. Instrum. Methods Phys. Res., Sect. B 200, 303–307 (2003)

    Article  Google Scholar 

  36. J.Y. Buffiere, E. Ferrie, H. Proudhon, W. Ludwig, Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-ray micro-tomography. Mater. Sci. Technol. 22(9), 1019–1024 (2006)

    Article  Google Scholar 

  37. M.A. Dudek, L. Hunter, S. Kranz, J.J. Williams, S.H. Lau, N. Chawla, Three-dimensional (3D) visualization of reflow porosity and modeling of deformation in Pb-free solder joints. Mater. Charact. 61(4), 433–439 (2010)

    Article  Google Scholar 

  38. N. Daphalapurkar, J. Hanan, N. Phelps, H. Bale, H. Lu, Tomography and simulation of microstructure evolution of a closed-cell polymer foam in compression. Mech. Adv. Mater. Struct. 15(8), 594–611 (2008)

    Article  Google Scholar 

  39. A. Sassov, E. Buelens, Micro-CT for Polymers and Composite Materials, in Functional Materials, ed. by K. Grassie, E. Teuckhoff, G. Wegner, J. Haußelt, H. Hanselka (Wiley, Weinheim, 2006), pp. 374–377

    Chapter  Google Scholar 

  40. B.M. Patterson, K. Henderson, Z. Smith, D. Zhang, P. Giguere, Applications of micro-CT to in-situ foam compression and numerical modeling. Microsc. Anal. S4–7 (2012)

    Google Scholar 

  41. P.R. Laity, C.R. Siviour, P.D. Church, W.G. Proud, High strain rate characterisation of a polymer bonded sugar, in Shock Compression of Condensed Matter—2005, Pts 1 and 2, ed. by M.D. Furnish, et al.(2006), pp. 905–908

    Google Scholar 

  42. C. Siviour, P. Laity, W. Proud, J. Field, D. Porter, P. Church, P. Gould, W. Huntingdon-Thresher, High strain rate properties of a polymer-bonded sugar: their dependence on applied and internal constraints. Proc. R. Soc. A Math. Phys. Eng. Sci. 464(2093), 1229–1255 (2008)

    Article  Google Scholar 

  43. J. Desrues, R. Chambon, M. Mokni, F. Mazerolle, Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Geotechnique 46(3), 529–546 (1996)

    Article  Google Scholar 

  44. R. Al-Raoush, K.A. Alshibli, Distribution of local void ratio in porous media systems from 3D X-ray microtomography images. Phys. A Stat. Mech. Appl. 361(2), 441–456 (2006)

    Article  Google Scholar 

  45. J. Desrues, G. Viggiani, Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int. J. Numer. Anal. Methods Geomech. 28(4), 279–321 (2004)

    Article  Google Scholar 

  46. J. Desrues, Tracking strain localization in geomaterials using computerized tomography. in X-ray CT for Geomaterials (2004), pp. 15–41

    Google Scholar 

  47. K. Alshibli, A. Hasan, Spatial variation of void ratio and shear band thickness in sand using X-ray computed tomography. Geotechnique 58(4), 249–257 (2008)

    Article  Google Scholar 

  48. K.A. Alshibli, S. Sture, N.C. Costes, M.L. Frank, M.R. Lankton, S.N. Batiste, R.A. Swanson, Assessment of localized deformations in sand using X-ray computed tomography. ASTM Geotech. Test. J. 23(3), 274–299 (2000)

    Article  Google Scholar 

  49. J. Otani, T. Mukunoki, Y. Obara, Characterization of failure in sand under triaxial compression using an industrial X-ray CT scanner. Int. J. Phys. Model. Geotech. 2(1), 15–22 (2002)

    Google Scholar 

  50. P. Bari, H. Bale, J.C. Hanan, Observing 3-D deformation of silica sand under in-situ quasi-static compression. Mech. Mater. 54, 84–90 (2012)

    Article  Google Scholar 

  51. S. Hall, N. Lenoir, G. Viggiani, J. Desrues, P. Bésuelle, Strain localisation in sand under triaxial loading: characterisation by x-ray micro tomography and 3D digital image correlation, in Proceedings of the 1st Int. Symp. on Computational Geomechanics (ComGeo 1), 2009

    Google Scholar 

  52. J.F. Peters, M. Muthuswamy, J. Wibowo, A. Tordesillas, Characterization of force chains in granular material. Phys. Rev. E 72(4), 041307 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

HL acknowledges the support of ONR MURI 0014-11-1-0691, AFOSR FA9550-14-1-0227, US Army W91CBR-13-C-0037, DOE NEUP 09-416, and NSF ECCS-1459044 and CMMI-1031829. HL also thanks the Louis A. Beecherl Chair for additional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Hu, Z., Luo, H., Du, Y., Lu, H. (2016). Correlation of Microscale Deformations to Macroscopic Mechanical Behavior Using Incremental Digital Volume Correlation of In-Situ Tomography. In: Jin, H., Yoshida, S., Lamberti, L., Lin, MT. (eds) Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-22446-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22446-6_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22445-9

  • Online ISBN: 978-3-319-22446-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics