Skip to main content

Highly Accurate 3D Shape and Deformation Measurements Using Fluorescent Stereo Microscopy

  • Conference paper
Advancement of Optical Methods in Experimental Mechanics, Volume 3

Abstract

Biomechanics has been developing at rapid pace in recent decades. For investigation of the biotissues, biomaterials or biofilms under the microscale or the nanoscale, it urgently demands an accurate measurement technique for three-dimensional (3D) surface profilometry and deformation in real-time. Traditional stereo microscope with stereo-based digital image correlation (DIC) works well on common materials, but it is hard to apply to moisture sample due to the specular reflections which could cause large decorrelation among those stereo images. In this paper, we described a fluorescent stereo microscopy (FSM) measurement method for surface profilometry and deformation based on stereo-based DIC. Due to the complex lens combination of a microscope, the distortion of the optical system is hard to formulate accurately using ordinary distortion models. Thus, it could cause large reconstruction errors, particularly in Z-direction in height. In order to improve the accuracy, a new distortion correction scheme is introduced along with a new calibration board. This distortion correction method is intended for use prior to stereo-vision calibration by mapping sensor coordinates of generic image coordinates to a virtual ideal plane. In order to demonstrate this technique, a sequence pair of images of a biofilm is captured during growth, and the 3D surface profilometry and deformation was measured with high accuracy accordingly. A detailed description of this technique is presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.-J. Orteu, 3-D computer vision in experimental mechanics. Opt. Lasers Eng. 47(3–4), 282–291 (2009)

    Article  Google Scholar 

  2. L. Robert, F. Nazaret, T. Cutard, J.J. Orteu, Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable. Exp. Mech. 47(6), 761–773 (2007)

    Article  Google Scholar 

  3. M.J. McGinnis, S. Pessiki, H. Turker, Application of three-dimensional digital image correlation to the core-drilling method. Exp. Mech. 45(4), 359–367 (2005)

    Article  Google Scholar 

  4. M.A. Sutton, X. Ke, S.M. Lessner, M. Goldbach, M. Yost, F. Zhao, H.W. Schreier, Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation. J. Biomed. Mater. Res. A 86A(2), 569 (2008)

    Article  Google Scholar 

  5. P. Compston, M. Styles, S. Kalyanasundaram, Low energy impact damage modes in aluminum foam and polymer foam sandwich structures. J. Sandw. Struct. Mater. 8(5), 365–379 (2006)

    Article  Google Scholar 

  6. F. Barthelat, Z. Wu, B.C. Prorok, H.D. Espinosa, Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation. Exp. Mech. 43(3), 331–340 (2003)

    Article  Google Scholar 

  7. V. Tiwari, M. Sutton, S. McNeill, Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation. Exp. Mech. 47(4), 561–579 (2007)

    Article  Google Scholar 

  8. P. Luo, Y. Chao, M. Sutton, W. Peters, Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Exp. Mech. 33(2), 123–132 (1993)

    Article  Google Scholar 

  9. Z. Hu, H. Xie, J. Lu, T. Hua, J. Zhu, Study of the performance of different subpixel image correlation methods in 3D digital image correlation. Appl. Opt. 49(21), 4044–4051 (2010)

    Article  Google Scholar 

  10. Z. Hu, H. Xie, J. Lu, H. Wang, J. Zhu, Error evaluation technique for 3D digital image correlation. Appl. Opt. 50(33), 6239–6247 (2011)

    Article  Google Scholar 

  11. M. Pankow, B. Justusson, A.M. Waas, Three-dimensional digital image correlation technique using single high-speed camera for measuring large out-of-plane displacements at high framing rates. Appl. Opt. 49(17), 3418–3427 (2010)

    Article  Google Scholar 

  12. Z.Z. Tang, J. Liang, Z.Z. Xiao, C. Guo, H. Hu, Three-dimensional digital image correlation system for deformation measurement in experimental mechanics. Opt. Eng. 49(10), 103601 (2010)

    Article  Google Scholar 

  13. F. Forsberg, M. Sjodahl, R. Mooser, E. Hack, P. Wyss, Full three-dimensional strain measurements on wood exposed to three-point bending: analysis by use of digital volume correlation applied to synchrotron radiation micro-computed tomography image data. Strain 46(1), 47–60 (2010)

    Article  Google Scholar 

  14. S. Hall, N. Lenoir, G. Viggiani, J. Desrues, P. Bésuelle, Strain localisation in sand under triaxial loading: characterisation by x-ray micro tomography and 3D digital image correlation, in Proceedings of the 1st International Symposium on Computational Geomechanics (ComGeo 1), 2009

    Google Scholar 

  15. S. Roux, F. Hild, P. Viot, D. Bernard, Three-dimensional image correlation from X-ray computed tomography of solid foam. Compos. A: Appl. Sci. Manuf. 39(8), 1253–1265 (2008)

    Article  Google Scholar 

  16. J. Rethore, J.P. Tinnes, S. Roux, J.Y. Buffiere, F. Hild, Extended three-dimensional digital image correlation (X3D-DIC). C. R. Mec. 336(8), 643–649 (2008)

    Article  MATH  Google Scholar 

  17. E. Verhulp, B. Rietbergen, R. Huiskes, A three-dimensional digital image correlation technique for strain measurements in microstructures. J. Biomech. 37(9), 1313–1320 (2004)

    Article  Google Scholar 

  18. Z. Hu, H. Luo, W. Young, H. Lu, Incremental digital volume correlation for large deformation measurement of PMI foam in compression, in ASME 2012 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers, Houston, TX, 2012)

    Google Scholar 

  19. Z. Hu, Y. Du, H. Luo, B. Zhong, H. Lu, Internal deformation measurement and force chain characterization of Mason Sand under confined compression using incremental digital volume correlation. Exp. Mech. 54(9), 1575–1586 (2014)

    Article  Google Scholar 

  20. Z. Hu, H. Luo, S.G. Bardenhagen, C.R. Siviour, R.W. Armstrong, H. Lu, Internal deformation measurement of polymer bonded sugar in compression by digital volume correlation of in-situ tomography. Exp. Mech. 55(1), 289–300 (2014)

    Article  Google Scholar 

  21. Z. Hu, H. Luo, H. Lu, Observation of the Microstructural Evolution in a Structural Polymeric Foam Using Incremental Digital Volume Correlation, in Advancement of Optical Methods in Experimental Mechanics, ed. by H. Jin et al., vol. 3 (Springer International Publishing, Cham, 2014), pp. 159–166

    Chapter  Google Scholar 

  22. C. Franck, S. Hong, S.A. Maskarinec, D.A. Tirrell, G. Ravichandran, Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp. Mech. 47(3), 427–438 (2007)

    Article  Google Scholar 

  23. N. Lenoir, M. Bornert, J. Desrues, P. Bésuelle, G. Viggiani, Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43(3), 193–205 (2007)

    Article  Google Scholar 

  24. X.D. Ke, H. Schreier, M. Sutton, Y. Wang, Error assessment in stereo-based deformation measurements. Exp. Mech. 51(4), 423–441 (2011)

    Article  Google Scholar 

  25. Y.Q. Wang, M. Sutton, X.D. Ke, H. Schreier, P. Reu, T. Miller, On error assessment in stereo-based deformation measurements. Exp. Mech. 51(4), 405–422 (2011)

    Article  Google Scholar 

  26. Z. Hu, H. Luo, Y. Du, H. Lu, Fluorescent stereo microscopy for 3D surface profilometry and deformation mapping. Opt. Express 21(10), 11808–11818 (2013)

    Article  Google Scholar 

  27. P. Reu, A study of the influence of calibration uncertainty on the global uncertainty for digital image correlation using a Monte Carlo Approach. Exp. Mech, 1–20 (2013)

    Google Scholar 

  28. M. Sutton, J. Orteu, H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer, New York, NY, 2009)

    Google Scholar 

  29. H. Schreier, D. Garcia, M. Sutton, Advances in light microscope stereo vision. Exp. Mech. 44(3), 278–288 (2004)

    Article  Google Scholar 

  30. S. Yoneyama, H. Kikuta, A. Kitagawa, K. Kitamura, Lens distortion correction for digital image correlation by measuring rigid body displacement. Opt. Eng. 45, 023602 (2006)

    Article  Google Scholar 

  31. S. Yoneyama, A. Kitagawa, K. Kitamura, H. Kikuta, In-plane displacement measurement using digital image correlation with lens distortion correction. JSME Int. J. Ser. A Solid Mech. & Mat. Eng. 49(3), 458–467 (2006)

    Article  Google Scholar 

  32. Z. Hu, H. Lu, H. Xie, J. Gao, A universal spatial distortion correction method for complex image acquisition system, Under preparation, 2015

    Google Scholar 

  33. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge University Press, New York, NY, 2007)

    Google Scholar 

  34. J.-Y. Bougue, Camera Calibration Toolbox for Matlab. (2010), http://www.vision.caltech.edu/bouguetj/calib_doc/

  35. B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter 8(21), 5728–5745 (2012)

    Article  Google Scholar 

  36. M. Trejo, C. Douarche, V. Bailleux, C. Poulard, S. Mariot, C. Regeard, E. Raspaud, Elasticity and wrinkled morphology of Bacillus subtilis pellicles. Proc. Natl. Acad. Sci. 110(6), 2011–2016 (2013)

    Article  Google Scholar 

  37. J. Dervaux, P. Ciarletta, M.B. Amar, Morphogenesis of thin hyperelastic plates: a constitutive theory of biological growth in the Föppl–von Kármán limit. J. Mech. Phys. Solids 57(3), 458–471 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A.B. Robinson, H. Lu, J. Garcia-Ojalvo, G.M. Süel, Localized cell death focuses mechanical forces during 3D patterning in a biofilm. Proc. Natl. Acad. Sci. 109(46), 18891–18896 (2012)

    Article  Google Scholar 

  39. Z. Huang, W. Hong, Z. Suo, Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53(9), 2101–2118 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

HL acknowledges the support of ONR MURI 0014-11-1-0691, AFOSR FA9550-14-1-0227, US Army W91CBR-13-C-0037, DOE NEUP 09-416, and NSF ECCS-1459044 and CMMI-1031829. HL also thanks the Louis A. Beecherl Chair for additional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Hu, Z., Luo, H., Lu, H. (2016). Highly Accurate 3D Shape and Deformation Measurements Using Fluorescent Stereo Microscopy. In: Jin, H., Yoshida, S., Lamberti, L., Lin, MT. (eds) Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-22446-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22446-6_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22445-9

  • Online ISBN: 978-3-319-22446-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics