Skip to main content

Interaction of Shock Wave with Granular Materials

  • Conference paper
Challenges in Mechanics of Time Dependent Materials, Volume 2

Abstract

The mechanical behavior of granular materials such as beads and sand under blast wave involves complex solid–fluid coupling. In this study, a miniature shock tube is developed to investigate the interaction of shock wave with granular materials. A large-opening metal grid is used to support beads. Pressure is measured by pressure sensors as shock wave propagates. Steel beads are used for the investigation of their interaction with shock wave. A Schlieren photography system is used to observe the flow field. A high-speed camera is used to acquire video of the wave. The interaction of shock wave with beads is observed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.J. Benson, V.F. Nesterenko, F. Jonsdottir, M.A. Meyers, Quasistatic and dynamic regimes of granular material deformation under impulse loading. J. Mech. Phys. Solids 45, 1955–1999 (1997)

    Article  MATH  Google Scholar 

  2. P. Fu, Y.F. Dafalias, Quantification of large and localized deformation in granular materials. Int. J. Solids Struct. 49, 1741–1752 (2012)

    Article  Google Scholar 

  3. L.L. Ragione, J.T. Jenkins, The initial response of an idealized granular material. Proc. Math. Phys. Eng. Sci. 463, 735–758 (2007)

    Article  MATH  Google Scholar 

  4. J.N. Roux, Geometric origin of mechanical properties of granular materials. Phys. Rev. E 61, 6802–6836 (2000)

    Article  MathSciNet  Google Scholar 

  5. W.L. Cooper, B.A. Breaux, Grain fracture in rapid particulate media deformation and a particulate media research roadmap from the PMEE workshops. International Journal of Fracture 162, 137–150 (2010)

    Article  MATH  Google Scholar 

  6. R. Regueiro, R. Pak, J. McCartney, S. Sture, B. Yan, Z. Duan, J. Svoboda, W. Mun, O. Vasilyev, N. Kasimov, E. Brown-Dymkoski, C. Hansen, S. Li, B. Ren, K. Alshibli, A. Druckrey, H. Lu, H. Luo, R. Brannon., C. Bonifasi-Lista, A. Yarahmadi, E. Ghodrati, J. Colovos, ONR MURI project on soil blast modeling and simulation, Chapter 42 in Dynamic Behavior of Materials, ed. by B. Song et al. The Conference Proceedings of the Society for Experimental Mechanics Series, 1, 341–353 (2014)

    Google Scholar 

  7. B.E. Martin, E. Kabir, W. Chen, Undrained high-pressure and high strain-rate response of dry sand under triaxial loading. Int. J. Impact Eng. 54, 51–63 (2013)

    Article  Google Scholar 

  8. H. Luo, H. Lu, W.L. Cooper, R. Komanduri, Effect of mass density on the compressive behavior of dry sand under confinement at high strain rates. Exp. Mech. 51(9), 1499–1510 (2011)

    Article  Google Scholar 

  9. H. Lu, H. Luo, W.L. Cooper, R. Komanduri, Effect of particle size on the compressive behavior of dry sand under confinement at high strain rates, Chapter 67 in Dynamic Behavior of Materials. Proceedings of the 2012 Annual Conference & Exposition on Experimental and Applied Mechanics, Conference Proceedings of SEM Series C,1, 523–530 (2013)

    Google Scholar 

  10. H. Luo, W.L. Cooper, H. Lu, Effect of moisture on the compressive behavior of dry sand under confinement at high strain rates, in Chapter 46 in Dynamic Behavior of Materials ed. by B. Song. Proceedings of the 2013 Annual Conference & Exposition on Experimental and Applied Mechanics, Conference Proceedings of SEM series, Vol. 1, (Springer, 2014), pp. 381–388

    Google Scholar 

  11. H. Luo, W.L. Cooper, H. Lu, Effects of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates. Int. J. Impact Eng. 65, 40–55 (2014)

    Article  Google Scholar 

  12. H. Luo, Y. Du, Z. Hu, H. Lu. High-strain rate compressive behavior of dry mason sand under confinement. Chapter 46 in Dynamic Behavior of Materials , ed. by B. Song. Proceedings of the 2014 Annual Conference on Experimental and Applied Mechanics, Conference Proceedings of the Society for Experimental Mechanics Series, Vol. 1, (Springer, 2015) pp. 381–388

    Google Scholar 

  13. W. Higgins, T. Chakraborty, D. Basu, A high strain-rate constitutive model for sand and its application in finite-element analysis of tunnels subjected to blast. Int. J. Numer. Anal. Methods Geomech 37(15), 2590–2610 (2013)

    Article  Google Scholar 

  14. M. Omidvar, M. Iskander, S. Bless, Stress–strain behavior of sand at high strain rates. Int. J. Impact Eng. 49, 192–213 (2012)

    Article  Google Scholar 

  15. H. Shi, K. Yamamura, The interaction between shock waves and solid spheres arrays in a shock tube. Acta Mech. Sinica 20, 219–227 (2004)

    Article  Google Scholar 

  16. M. Sun, T. Saito, K. Takayama, H. Tanno, Unsteady drag on a sphere by shock wave loading. Shock Waves 14, 3–9 (2004)

    Article  Google Scholar 

  17. G. Jourdan, L. Houas, O. Igra, J.L. Estivalezes, C. Devals, E.E. Meshkov, Drag coefficient of a sphere in a non-stationary flow: new results. Proc. Math. Phys. Eng. Sci. 463, 3323–3345 (2007)

    Article  Google Scholar 

  18. J.L. Wagner, S.J. Beresh, S.P. Kearney, B.O. Pruett, E. Wright, Shock tube investigation of unsteady drag in shock-particle interactions. 41st AIAA Fluid Dynamics Conference and Exhibit. (Honolulu, HI, AIAA), 27–30 June 2011

    Google Scholar 

  19. J.L. Wagner, S.J. Beresh, S.P. Kearney, W.M. Trott, J.N. Castaneda, B.O. Pruett, M.R. Baer, A multiphase shock tube for shock wave interactions with dense particle fields. Exp. Fluids 52, 1507–1517 (2012)

    Article  Google Scholar 

  20. D. Estruch, N.J. Lawson, D.G. MacManus, K.P. Garry, J.L. Stollery, Measurement of shock wave unsteadiness using a high-speed Schlieren system and digital image processing. Rev. Sci. Instrum. 79, 126108 (2008)

    Article  Google Scholar 

  21. X. Rogue, G. Rodriguez, J.F. Haas, R. Saurel, Experimental and numerical investigation of the shock-induced fluidization of a particles bed. Shock Waves 8, 29–45 (1998)

    Article  MATH  Google Scholar 

  22. H. Tanno, K. Itoh, T. Saito, A. Abe, K. Takayama, Interaction of a shock with a sphere suspended in a vertical shock tube. Shock Waves 13, 191–200 (2003)

    Article  Google Scholar 

  23. K. Chojnicki, A.B. Clarke, J.C. Phillips, A shock-tube investigation of the dynamics of gas-particle mixtures: implications for explosive volcanic eruptions. Geophys. Res. Lett. 33, L15309 (2006)

    Article  Google Scholar 

  24. G.S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, Berlin, 2001)

    Book  Google Scholar 

  25. P.K. Panigrahi, K. Muralidhar, Laser schlieren and shadowgraph, in Chapter 2 in Schlieren and Shadowgraph Methods In Heat And Mass Transfer, Springer Briefs in Thermal Engineering and Applied Science, (Springer, 2012), pp. 23–46

    Google Scholar 

Download references

Acknowledgement

We acknowledge the support of ONR Multidisciplinary University Research Initiative program (MURI) grant N00014-11-1-0691, and NSF under CMMI-1031829 and ECCS- 1307997. Lu also thanks the Louis A. Beecherl Jr. Chair at the University of Texas at Dallas for additional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Luo, H., Xu, T., Wang, X., Lu, H. (2016). Interaction of Shock Wave with Granular Materials. In: Antoun, B. (eds) Challenges in Mechanics of Time Dependent Materials, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-22443-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22443-5_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22442-8

  • Online ISBN: 978-3-319-22443-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics