Skip to main content

Physical-Layer Key Generation and Reconciliation

  • Chapter
  • First Online:
Book cover Communications in Interference Limited Networks

Abstract

Physical layer security is a technique that makes use of the physical communication channel or medium to provide additional robustness to eavesdroppers and attackers. Key establishment exploiting a multiple-input multiple-output (MIMO) reciprocal wireless channel is proposed and its performance investigated, indicating that secure keys can be rapidly generated between two nodes, even in the presence of close eavesdroppers. The use of reconfigurable antennas is investigated and experimentally proven as a key establishment solution for static channels with limited multipath. Additionally, different options are discussed to handle key-differences due to non-correlated noise together with quantization, either by simply introducing guard intervals or by joint source coding with LDPC codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We ignore the effect of the number of nearest neighbors, but it can be argued that this effect is negligible.

  2. 2.

    Real and imaginary components not correlated.

  3. 3.

    SNR\(=10\log _{10}\frac{\sigma _{ch}^2}{\sigma _{a/b}^2}\), \(\sigma _{a}^2=\sigma _{b}^2\) .

References

  1. Ahlswede R, Csiszar I (1993) Common randomness in information theory and cryptography. I. Secret sharing. IEEE Trans Inf Theory 39:1121–1132

    Article  MathSciNet  MATH  Google Scholar 

  2. Aono T, Higuchi K, Ohira T, Komiyama B, Sasaoka H (2005) Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels. IEEE Trans Antennas Propag 53:3776–3784

    Article  Google Scholar 

  3. Bloch M, Barros J (2011) Physical-layer security: from information theory to security engineering. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Bloch M, Thangaraj A, McLaughlin S, Merolla JM (2006a) LDPC-based Gaussian key reconciliation. In: Information theory workshop, 2006. ITW ’06 Punta del Este. IEEE, pp 116–120

    Google Scholar 

  5. Bloch MR, Thangaraj A, McLaughlin SW, Merolla JM (2006b) LDPC-based secret key agreement over the Gaussian wiretap channel. Proceedings of IEEE international symposium on information theory. Seattle, USA, pp 1179–1183

    Google Scholar 

  6. Chung SY, Richardson T, Urbanke R (2001) Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation. IEEE Trans Inf Theory 47(2):657–670

    Article  MathSciNet  MATH  Google Scholar 

  7. Davey M, MacKay D (1998) Low-density parity check codes over GF(q). IEEE Commun Lett 2(6):165–167

    Article  Google Scholar 

  8. von Deetzen N, Sandberg S (2010) On the UEP capabilities of several LDPC construction algorithms. IEEE Trans Commun 58(11):3041–3046

    Article  Google Scholar 

  9. Etesami J, Henkel W (2012) LDPC code construction for wireless physical-layer key reconciliation. In: 1st IEEE international conference on communications in China (ICCC), pp 208–213

    Google Scholar 

  10. Filip A, Mehmood R, Wallace J, Henkel W (2013) Physical-layer key generation supported by RECAP antenna structures. In: 9th international ITG conference on systems, communication and coding (SCC), pp 1–6

    Google Scholar 

  11. Filip A, Mehmood R, Wallace J, Henkel W (2014) Variable guard band construction to support key reconciliation. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 8173–8177

    Google Scholar 

  12. Gersho A, Gray RM (1991) Vector quantization and signal compression. Kluwer Academic Publishers, Norwell

    Google Scholar 

  13. Goel S, Negi R (2008) Guaranteeing secrecy using artificial noise. IEEE Trans Wirel Commun 7:2180–2189

    Article  Google Scholar 

  14. Graur O, Islam N, Filip A, Henkel W (2015a) Quantization aspects in LDPC key reconciliation for physical layer security. In: 10th international ITG conference on systems, communications and coding SCC 2015, pp 1–6

    Google Scholar 

  15. Graur O, Islam N, Filip A, Henkel W (2016) Quantization and LLR computation for physical layer security. In: Proceedings of the International Zürich Seminar on Communications (IZS)

    Google Scholar 

  16. Hero AO III (2003) Secure space-time communication. IEEE Trans Inf Theory 49:3235–3249

    Article  MathSciNet  MATH  Google Scholar 

  17. Islam N, Graur O, Henkel W, Filip A (2015) LDPC code design aspects for physical-layer key reconciliation. In: IEEE Global Communications Conference (Globecom) 2015

    Google Scholar 

  18. Jensen MA, Wallace JW (2004) A review of antennas and propagation for MIMO wireless communications. IEEE Trans Antennas Propag 52:2810–2824

    Article  Google Scholar 

  19. Kim H, Villasenor JD (2008) Secure MIMO communications in a system with equal numbers of transmit and receive antennas. IEEE Commun Lett 12:386–388

    Article  Google Scholar 

  20. Koorapaty H, Hassan A, Chennakeshu S (2000) Secure information transmission for mobile radio. IEEE Commun Lett 4:52–55

    Article  Google Scholar 

  21. Koyluoglu O, El Gamal H (2012) Polar coding for secure transmission and key agreement. IEEE Trans Inf Forensics Secur 7(5):1472–1483

    Article  Google Scholar 

  22. Li X, Ratazzi EP (2005) MIMO transmissions with information-theoretic secrecy for secret-key agreement in wireless networks. In: Proceedings of 2005 IEEE Military Communication Conference (MILCOM’05), Atlantic City, NJ, vol 3, pp 1353–1359

    Google Scholar 

  23. Linde Y, Buzo A, Gray R (1980) An algorithm for vector quantizer design. IEEE Trans Commun 28(1):84–95

    Article  Google Scholar 

  24. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137

    Article  MathSciNet  MATH  Google Scholar 

  25. MacKay D, Wilson S, Davey M (1999) Comparison of constructions of irregular Gallager codes. IEEE Trans Commun 47(10):1449–1454

    Article  Google Scholar 

  26. Massey J (1988) An introduction to contemporary cryptology. Proc IEEE 76:533–549

    Article  Google Scholar 

  27. Mathur S, Trappe W, Mandayam N, Ye C, Reznik A (2008) Radio-telepathy: extracting a secret key from an unauthenticated wireless channel. In: Proceedings of 14th ACM international conference on mobile computing and networking, San Francisco, CA, pp 128–139

    Google Scholar 

  28. Maurer U (1993) Secret key agreement by public discussion from common information. IEEE Trans Inf Theory 39:733–742

    Article  MATH  Google Scholar 

  29. Maurer U, Wolf S (2003a) Secret-key agreement over unauthenticated public channels–part I: definitions and a completeness result. IEEE Trans Inf Theory 49:822–831

    Article  MathSciNet  MATH  Google Scholar 

  30. Maurer U, Wolf S (2003b) Secret-key agreement over unauthenticated public channels–part III: privacy amplification. IEEE Trans Inf Theory 49:839–851

    Article  MathSciNet  MATH  Google Scholar 

  31. Maurer U, Wolf S (2003c) Secret-key agreement over unauthenticated public channels–part II: the simulatability condition. IEEE Trans Inf Theory 49:832–838

    Article  MathSciNet  MATH  Google Scholar 

  32. Max J (1960) Quantizing for minimum distortion. IEEE Trans Inf Theory 6(1):7–12

    Article  MathSciNet  Google Scholar 

  33. Mehmood R, Wallace JW (2011) Wireless security enhancement using parasitic reconfigurable aperture antennas. Proceedings of the European conference on antennas and propagation. Italy, Rome, pp 2761–2765

    Google Scholar 

  34. Mehmood R, Wallace JW (2012) Experimental assessment of secret key generation using parasitic reconfigurable aperture antennas. Proceedings of the European conference on antennas and propagation. Czech Republic, Prague, pp 1151–1155

    Google Scholar 

  35. Mehmood R, Wallace JW (2012b) MIMO capacity enhancement using parasitic reconfigurable aperture antennas (RECAPs). IEEE Trans Antennas Propag 60:665–673

    Article  MathSciNet  Google Scholar 

  36. Mehmood R, Wallace JW, Jensen MA (2014a) Key establishment employing reconfigurable antennas: impact of antenna complexity. IEEE Trans Wirel Commun 13:6300–6310

    Article  Google Scholar 

  37. Mehmood R, Wallace JW, Jensen MA (2014) Optimal array patterns for encryption key establishment in LOS channels. Proceedings of the IEEE antennas and propagation society international symposium. Memphis, TN, pp 478–479

    Google Scholar 

  38. Mehmood R, Wallace JW, Jensen MA (2014) Secure array synthesis. IEEE Trans Antennas Propag Submitted

    Google Scholar 

  39. Mohammadi MS (2009) MIMO minimum leakage-physically secure wireless data transmission. Proceedings of the international conference application of information and communication technologies. Baku, Azerbaijan, pp 1–5

    Google Scholar 

  40. Ozarow LH, Wyner AD (1984) Wire-tap channel II. AT&T Bell Lab Tech J 63:2135–2157

    Article  MATH  Google Scholar 

  41. Pierrot A, Chou R, Bloch M (2013) Experimental aspects of secret key generation in indoor wireless environments. In: IEEE 14th workshop on signal processing advances in wireless communications (SPAWC), pp 669–673

    Google Scholar 

  42. Pradhan SS, Ramchandran K (2003) Distributed source coding using syndromes (DISCUS): design and construction. IEEE Trans Inf Theory 49:626–643

    Article  MathSciNet  MATH  Google Scholar 

  43. Richardson T, Urbanke R (2001) The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans Inf Theory 47(2):599–618

    Article  MathSciNet  MATH  Google Scholar 

  44. Richardson T, Urbanke R (2004) Multi-edge type LDPC codes

    Google Scholar 

  45. Richardson T, Urbanke R (2008) Modern coding theory. Cambridge University Press

    Google Scholar 

  46. Richardson T, Shokrollahi M, Urbanke R (2001) Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans Inf Theory 47(2):619–637

    Article  MathSciNet  MATH  Google Scholar 

  47. Sandberg S, von Deetzen N (2010) Design of bandwidth-efficient unequal error protection LDPC codes. IEEE Trans Commun 58(3):802–811

    Article  Google Scholar 

  48. Sayeed A, Perrig A (2008) Secure wireless communications: secret keys through multipath. Proceedings of the 2008 IEEE international conference acoustics, speech, and signal processing. Las Vegas, NV, pp 3013–3016

    Chapter  Google Scholar 

  49. Sharma RK, Wallace JW (2010) Bit error rate and efficiency analysis of wireless reciprocal channel key generation. Proceedings of the IEEE conference on wireless information technology and systems. Honolulu, HI, pp 1–4

    Google Scholar 

  50. Sharma RK, Wallace JW (2011) Physical layer key generation methods for arbitrary fading channels. In: Proceedings of the 2011 IEEE antennas and propagation society international symposium, pp 1368–1371

    Google Scholar 

  51. Slepian D, Wolf J (1973) Noiseless coding of correlated information sources. IEEE Trans Inf Theory 19(4):471–480

    Article  MathSciNet  MATH  Google Scholar 

  52. Sun X, Wu X, Zhao C, Jiang M, Xu W (2010) Slepian-Wolf coding for reconciliation of physical layer secret keys. In: Wireless Communications and Networking Conference (WCNC), 2010 IEEE, pp 1–6

    Google Scholar 

  53. Thangaraj A, Dihidar S, Calderbank A, McLaughlin S, Merolla JM (2007) Applications of LDPC codes to the wiretap channel. IEEE Trans Inf Theory 53(8):2933–2945

    Article  MathSciNet  Google Scholar 

  54. Van Assche G, Cardinal J, Cerf NJ (2004) Reconciliation of a quantum-distributed Gaussian key. IEEE Trans Inf Theory 50:394–400

    Article  MATH  Google Scholar 

  55. Voicila A, Declercq D, Verdier F, Fossorier M, Urard P (2010) Low-complexity decoding for non-binary LDPC codes in high order fields. IEEE Trans Commun 58(5):1365–1375

    Article  Google Scholar 

  56. Wallace J (2009) Secure physical layer key generation schemes: performance and information theoretic limits. Proceedings of the IEEE international conference on communications. Dresden, Germany, pp 1–4

    Google Scholar 

  57. Wallace JW, Sharma RK (2010) Automatic secret keys from reciprocal MIMO wireless channels: measurement and analysis. IEEE Trans Inf Forensics Secur 5:381–392

    Article  Google Scholar 

  58. Wilson R, Tse D, Scholtz RA (2007) Channel identification: secret sharing using reciprocity in ultrawideband channels. IEEE Trans Inf Forensics Secur 2:364–375

    Article  Google Scholar 

  59. Wyner A (1975) The wire-tap channel. Bell Syst Tech J 54(8):1355–1387

    Article  MathSciNet  MATH  Google Scholar 

  60. Ye C, Reznik A, Shah Y (2006) Extracting secrecy from jointly Gaussian random variables. Proceedings of IEEE international symposium on information theory. Seattle, WA, pp 2593–2597

    Google Scholar 

  61. Ye C, Reznik A, Sternberg G, Shah Y (2007) On the secrecy capabilities of ITU channels. In: Proceedings of the 66th IEEE vehicular technology conference, Baltimore, MD

    Google Scholar 

  62. Ye C, Mathur S, Reznik A, Shah Y, Trappe W, Mandayam NB (2010) Information-theoretically secret key generation for fading wireless channels. IEEE Trans Inf Forensics Secur 5:240–254

    Article  Google Scholar 

  63. Zhou X, Kyritsi P, Eggers P, Fitzek F (2007) The medium is the message: secure communication via waveform coding in MIMO systems. Proceedings of the IEEE 65th vehicular technology conference. Dublin, Ireland, pp 491–495

    Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) under Grants WA 2735/5-1/2 and HE 3654/11-1/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Henkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wallace, J. et al. (2016). Physical-Layer Key Generation and Reconciliation. In: Utschick, W. (eds) Communications in Interference Limited Networks. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-22440-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22440-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22439-8

  • Online ISBN: 978-3-319-22440-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics