Skip to main content

Confocal Laser-scanning Microscopy in Filamentous Fungi

  • Chapter
  • First Online:
Advanced Microscopy in Mycology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Confocal microscopy is an advanced fluorescence microscopy technique that utilizes laser illumination, optical devices, pinholes, computers, and cameras/detectors to perform cell and subcellular visualization. Confocal means “having the same focus” in terms of microscopy; the imaged region captured by the detector will be the same (i.e., in focus) as the in-focus illuminated region in the specimen. Thus, the out-of-focus light emanating from above and below the focal plane of the specimen is not included in the final image and only a thin optical plane of the sample is in focus. This “optical sectioning” is the principal advantage of confocal microscopy and is achieved without physically sectioning the specimen. Confocal images have improved resolution and contrast compared to those obtained with a conventional wide-field epifluorescence microscopy. Such an advantage is achieved by the use of monochromatic lasers to illuminate and scan across a specimen, and pinholes to eliminate out-of-focus light. Confocal microscopy has been successfully applied to answer a wide variety of fungal biology questions including cell and cytoplasmic dynamics and structure, fungus–host interactions, and organelle structure and function using different reporters simultaneously. This chapter focuses primarily on confocal microscopy used to image fungal cells. As with any technique, in spite of its great advantages, the pros and cons of confocal microscopy must be considered when determining its potential applications for specific fungal samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann GK, Eichler J (2007) Holography—a practical approach. Wiley, Weinheim

    Google Scholar 

  • Amos WB, White JG (2003) How the confocal laser scanning microscope entered biological research. Biol Cell 95:335–342

    Article  CAS  PubMed  Google Scholar 

  • Arcangeli C, Yu W, Cannistraro S, Gratton E (2000) Two-photon autofluorescence microscopy and spectroscopy of Antarctic fungus: new approach for studying effects of UV-B irradiation. Biopolymers 57:218–225

    Article  CAS  PubMed  Google Scholar 

  • Atkinson HA, Daniels A, Read ND (2002) Live-cell imaging of endocytosis during conidial germination in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol 37:233–244

    Article  PubMed  Google Scholar 

  • Bacia K, Kim SA, Schwille P (2006) Fluorescence cross-correlation spectroscopy in living cells. Nat Meth 3:83–89

    Article  CAS  Google Scholar 

  • Beisker W, Dolbeane F, Gray JW (1987) An improved immunocytochemical procedure for high-sensitivity detection of incorporated bromodeoxyuridine. Cytometry 8:235–239

    Article  CAS  PubMed  Google Scholar 

  • Betz WJ, Mao F, Bewick GS (1992) Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J Neurosci 12:363–375

    CAS  PubMed  Google Scholar 

  • Betz WJ, Mao F, Smith CB (1996) Imaging exocytosis and endocytosis. Curr Opin Neurobiol 6:365–371

    Article  CAS  PubMed  Google Scholar 

  • Bielska E, Higuchi Y, Schuster M, Steinberg N, Kilaru S, Talbot NJ, Steinberg G (2014) Long-distance endosome trafficking drives fungal effector production during plant infection. Nat Commun. doi:10.1038/ncomms6097

    Google Scholar 

  • Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in lving plant cells. J Microsc 214:159–173

    Article  CAS  PubMed  Google Scholar 

  • Bourett TM, Czymmek KJ, Howard RJ (1998) An improved method for affinity probe localization in whole cells of filamentous fungi. Fungal Genet Biol 24:3–13

    Article  CAS  PubMed  Google Scholar 

  • Bowman BJ, Draskovic M, Freitag M, Bowman EJ (2009) Structure and distribution of organelles and cellular location of calcium transporters in Neurospora crassa. Eukaryot Cell 8:1845–1855. doi:10.1128/EC.00174–09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Byer R (1988) Diode laser—pumped solid-state lasers. Science 239(4841):742–747. doi:10.1126/science.239.4841.742

    Article  CAS  PubMed  Google Scholar 

  • Caballero-Lima D, Sudbery PE (2014) In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension. Mol Biol Cell 25:1097–1110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chandler DE, Roberson RW (2009) Bioimaging: current concepts in light and electron microscopy, 1st edn. Jones and Bartlett Publishers LLC, Sudbury

    Google Scholar 

  • Cochilla AJ, Angelson JK, Betz WJ (1999) Monitoring secretory membrane with FM1-43 fluorescence. Annu Rev Neurosci 22:1–10

    Article  CAS  PubMed  Google Scholar 

  • Conchello JA, Lichtman JW (2005) Optical sectioning microscopy. Nat Methods 2:920–931

    Article  CAS  PubMed  Google Scholar 

  • Czymmek KJ (2005) Exploring fungal activity with confocal and multiphoton microscopy. In Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Czymmek KJ, Whallon JH, Klomparens A (1994) Confocal microscopy in mycological research. ExpMycol 18:275–293

    Google Scholar 

  • Czymmek KJ, Fogg M, Powell DH, Sweigard J, Park SY, Kang S (2007) In vivo time-lapse documentation using confocal and multi-photon microscopy reveals the mechanisms of invasion into the Arabidopsis root vascular system by Fusarium oxysporum. Fungal Genet Biol 44:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Day RD, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887–2921. doi:10.1039/B901966A

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delgado-Álvarez DL, Callejas-Negrete OA, Gómez N, Freitag M, Roberson RW, Smith LG, Mouriño-Pérez RR (2010) Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa. Fungal Genet Biol 47:573–586

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Álvarez DL, Bartnicki-García S, Seiler S, Mouriño-Pérez RR (2014) Septum development in Neurospora crassa: the Septal Actomyosin Tangle. PLoS One 9(5):e96744

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Diaspro A (2001) Confocal and two-photon microscopy: foundations, applications, and advances. Wiley-Liss, New York

    Google Scholar 

  • Digman MA, Gratton E (2009) Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. Wiley Interdiscip Rev Syst Biol Med 1:273–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dijksterhuis J (2003) Confocal microscopy of Spitzenkörper dynamics during growth and differentiation of rust fungi. Protoplasma 222:53–59

    Article  CAS  PubMed  Google Scholar 

  • Elorza MV, Rico H, Sentandrew R (1983) Calcofluor white alters the assembly of chitin fibirls in Saccharomyces cerevisiae and Candida albicans cells. J Gen Microbio 129:1577–1582

    CAS  Google Scholar 

  • Epp E, Nazarova E, Regan H, Douglas LM, Konopka JB, Vogel J, Whiteway M (2013) Clathrin- and Arp2/3-independent endocytosis in the fungal pathogen Candida albicans. mBio 4:e00476–e00413. doi:10.1128/mBio.00476–13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Feijo JA, Moreno N (2004) Imaging plant cells by two-photon excitation. Protoplasma 223:1–32

    Article  PubMed  Google Scholar 

  • Fisher-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4-64 as a tool for analyzing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198:246–259

    Article  Google Scholar 

  • Foldes-Papp Z, Demel U, Tilz GP (2003) Laser scanning confocal fluorescence microscopy: an overview. Int Immunopharmacol 3:1715–1729

    Article  CAS  PubMed  Google Scholar 

  • Freitag M, Selker EU (2005) Expression and visualization of red fluorescent protein (RFP) in Neurospora crassa. Fungal Genet Newslett 52:14–17.

    Google Scholar 

  • Freitag M, Ciuffetti LM, Selker EU (2001) Expression and visualization of green fluorescent protein (GFP) in Neurospora crassa. Fungal Genet Newslett 48:15–19

    Google Scholar 

  • Freitag M, Hickey PC, Raju NB, Selker EU, Read ND (2004) GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet Biol 41(10):897–910

    Article  CAS  PubMed  Google Scholar 

  • Fuchs F, Prokisch H, Neupert W, Westermann B (2002) Interactions of mitochondria with microtubules in the filamentous fungus Neurospora crassa. J Cell Sci 115:1931–1937

    CAS  PubMed  Google Scholar 

  • Haase J, Mishra PF, Stephens A, Haggerty R, Quammen C, Taylor RM, Yeh E, Basrai MA, Bloom K (2013) A 3D map of the yeast kinetochore reveals the presence of core and accessory centromere-specific histone. Curr Biol 23:1939–1944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haraguchi T, Shimi T, Koujin T, Hashiguchi N, Hiraoka Y (2002) Spectral imaging fluorescence microscopy. Genes Cells 7:881–887

    Article  CAS  PubMed  Google Scholar 

  • Hibbs AR (2004) Confocal microscopy for biologists. Springer, New York

    Book  Google Scholar 

  • Hickey PC, Read ND (2003) Biology of living fungi. British Mycological Society, Stevenage. (CD–ROM)

    Google Scholar 

  • Hickey PC, Read ND (2009) Imaging living cells of Aspergillus in vitro. Med Mycol 47(Supplement 1):S110–S119

    Article  CAS  PubMed  Google Scholar 

  • Hickey PC, Jacobson DJ, Read ND, Glass NL (2002) Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genet Biol 37:109–119

    Article  PubMed  Google Scholar 

  • Hickey PC, Swift SR, Roca MG, Read ND (2005) Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. Method Microbio 34:63–87. doi:10.1016/S0580-9517(04)34004-1

    Article  Google Scholar 

  • Hiraoka Y, Shimi T, Hashiguchi N (2002) Multispectral imaging fluorescence microscopy for living cells. Cell Struct Func 27:367–374

    Article  Google Scholar 

  • Hoch HC, Staples RC (1985) The microtubule cytoskeleton in hyphae of Uromyces phaseoli germlings: its relationship to the region of nucleation and to the F-actin cytoskeleton. Protoplasma 124:112–122

    Article  CAS  Google Scholar 

  • Hoffman J, Mendgen K (1998) Endocytosis and membrane turnover in the germ tube of Uromyces fabae. Fungal Genet Biol 24:77–85

    Article  Google Scholar 

  • Huang B, Bates M, Zhuang X (2009) Super resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016. doi:10.1146/annurev.biochem.77.061906.092014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hwang LC, Wohland T (2007) Recent advances in fluorescence cross-correlation spectroscopy. Cell Biochem Biophys 49:1–13

    Article  CAS  PubMed  Google Scholar 

  • Hyde GJ, Hardham AR (1992) Confocal microscopy of microtubule arrays in cryosectioned sporangia of Phytophthora cinnamomi. ExpMycol 16:201–218

    Google Scholar 

  • Ichiwara A, Tanaami T, Ishida H, Shimizu M (1999) Confocal fluorescent microcopy using a Nipkow scanner. In: Mason WT (ed) Fluorescent and luminescent probes for biological activity, 2nd edn. Academic, San Diego, pp 344–349

    Chapter  Google Scholar 

  • Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A 77:990–994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knaus H, Blab GA, Agronskaia AV, van den Heuvel DJ, Gerritsen HC, Wösten HAB (2013) Monitoring the metabolic state of fungal hyphae and the presence of melanin by nonlinear spectral imaging. Appl Environ Microbiol 79:6345–6350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knight H, Trewavas AJ, Read ND (1993) Confocal microscopy of living fungal hyphae microinjected with Ca2+-sensitive fluorescent dyes. Mycol Res 97:1505–1515

    Article  Google Scholar 

  • Koechner W (2006) Solid-state laser engineering, vol. 1. 6th, rev. and updated ed. Springer, Berlin

    Google Scholar 

  • Köhli M, Galati V, Boudier V, Roberson RW, Philippsen P (2008) Growth-speed correlated localization of exocyst and polarisome components in growth zones of Ashbya gossypii hyphal tips. J Cell Sci 121:3803–3814

    Article  CAS  Google Scholar 

  • Koll F, Sidoti C, Rincheval V, Lecellier G (2001) Mitochondrial membrane potential and ageing in Podospora anserina. Mech Ageing Dev 122:205–217

    Article  CAS  PubMed  Google Scholar 

  • König K (2000) Multiphoton microscopy in life sciences. J Microsc 200:83–104

    Article  PubMed  Google Scholar 

  • Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65:251–297

    Article  CAS  Google Scholar 

  • Kurtsiefer C, Mayer S, Zarda P, Weinfurter H (2000) Stable solid-state source of single photons. Phys Rev Lett 85:290

    Article  CAS  PubMed  Google Scholar 

  • Leith EN, Upatnieks J (1963) Wavefront reconstruction with continuous-tone objects. J Opt Soc Am 53(12):1377–1381

    Article  Google Scholar 

  • Leith EN, Upatnieks J (1964) Wavefront reconstruction with diffused. J Opt Soc Am 54(11):1295–1301

    Article  Google Scholar 

  • Leroch M, Mernke D, Koppenhoefer D, Schneider P, Mosbach A, Doehlemann G, Hahn M (2011) Living colors in the gray mold pathogen Botrytis cinerea: codon-optimized genes encoding green fluorescent protein and mcherry, which exhibit bright fluorescence. Appl Environ Microbiol 77(9):887–2897. doi:10.1128/AEM.02644–10

    Article  CAS  Google Scholar 

  • Lin S-J, Tan H-Y, Kuo C-J, Wu R-J, Wang S-H, Chen W-L, Jee S-H, Dong C-Y (2009) Multiphoton autofluorescence spectral analysis for fungus imaging and identification. Appl Phys Lett 95:43703–43703. doi:10.1063/1.3189084

    Article  CAS  Google Scholar 

  • Lowry D, Roberson RW (1997) The microtubule cytoskeleton during zoospore formation in Allomyces macrogynus. Protoplasma 196:45–54

    Article  Google Scholar 

  • McDaniel DP, Roberson RW (1998) γ-Tubulin is a component of the Spitzenkörper and centrosomes in hyphal tip cells of Allomyces macrogynus. Protoplasma 203:118–123

    Article  CAS  Google Scholar 

  • McDaniel DP, Roberson RW (2000) Microtubules are required for motility and positioning of vesicles and mitochondria in hyphal tip cells of Allomyces macrogynus. Fungal Genet Biol 31(3):233–244

    Article  CAS  PubMed  Google Scholar 

  • Minsky M (1988) Memoir on inventing the confocal scanning microscope. Scanning 10:128–138

    Article  Google Scholar 

  • Miyawaki A (2003) Fluorescence correlation spectroscopy for the detection and study of single molecules in biology. Bioessays 24:758–764

    Google Scholar 

  • Murphy DB, Davidson MW (2013) Fundamentals of light microscopy and electronic imaging. 2nd ed. Wiley, Hoboken

    Google Scholar 

  • Murray JM, Appleton PL, Swedlow JR, Waters JC (2007) Evaluating performance in three dimensional fluorescence microscopy. J Microsc 228:390–405

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakano A (2002) Spinning-disk confocal microscopy-a cutting-edge tool for imaging of membrane traffic. Cell Struct Func 27:349–355

    Article  Google Scholar 

  • Nasse MJ, Woehl JC (2010) Realistic modeling of the illumination point spread function in confocal scanning optical microscopy. J Opt Soc Am A 27(2):295–302. doi:10.1364/JOSAA.27.000295

    Article  Google Scholar 

  • Oparka KJ, Read ND (1994) The use of fluorescent probes for studies on living plant cells. In Harris N, Oparka KJ (eds) Plant cell biology. A practical approach. IRL Press, Oxford

    Google Scholar 

  • Paddock SW (2000) Principles and practices of laser scanning confocal microscopy. Mol Biotech 16:127–149

    Article  CAS  Google Scholar 

  • Paddock SW (2008) Over the rainbow: 25 years of confocal imaging. Bio Techniques 44:643–648

    CAS  Google Scholar 

  • Panepinto J, Komperda K, Frases S, Park YD, Djordjevic JT, Casadevall A, Williamson PR (2009) Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mole Micro 71:1165–1176

    Article  CAS  Google Scholar 

  • Pawley JB (2006) Handbook of biological confocal microscopy, 3th ed. Plenum Press, New York

    Book  Google Scholar 

  • Pawley JB (2010) Handbook of biological confocal microscopy (Google eBook). Springer, New York

    Google Scholar 

  • Rasmussen CG, Glass NL (2007) Localization of RHO-4 indicates differential regulation of conidial versus vegetative septation in the filamentous fungus Neurospora crassa. Eukaryot Cell 6:1097–1107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Read ND, Hickey PJ (2001) The vesicle trafficking network and tip growth in fungal hyphae. In: Geitmann A, Cresti M, Heath IB (eds) Cell biology of plant and fugal tip growth. IOS Press, Amsterdam

    Google Scholar 

  • Read ND, Kalkman ER (2003) Does endocytosis occur in fungal hyphae? Fungal Genet Biol 39:199–203

    Article  CAS  PubMed  Google Scholar 

  • Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Söldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607

    Google Scholar 

  • Rines DR, Thomann D, Dorn JF, Goodwin P, Sorger PK (2011) Live cell imaging of yeast. Cold Spring Harb Protoc 9:pdb.top065482

    Google Scholar 

  • Riquelme M, McDaniel DP, Roberson RW, Bartnicki-García S (2002) The effect of ropy-1 mutation on cytoplasmic organization in mature hyphae of Neurospora crassa. Fungal Genet Biol 37:171–179

    Article  CAS  PubMed  Google Scholar 

  • Roberson RW (1992) The actin cytoskeleton in hyphal cells of Sclerotium rolfsii. Mycologia 84:41–51

    Article  CAS  Google Scholar 

  • Roncero C, Duran A (1985) Effect of calcoflúor white and congo red on fungal wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol 170:1950–1954

    Google Scholar 

  • Shen KF, Osmani SA (2013) Regulation of mitosis by the NIMA kinase involves TINA and its newly discovered partner An-WDR8, at spindle pole bodies. Mol Biol Cell 24:3842–3856

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sheppard CJR, Shotton DM (1997). Confocal laser scanning microscopy. IOS Scientific Publishers, Oxford

    Google Scholar 

  • Shotton DM (1989) Confocal scanning optical microscopy and its applications for biological specimens. J Cell Sci 94:175–206

    Google Scholar 

  • Steinber G, Schliwa M, Lehmler C, Bölker M, Kahmann R, McIntosh JR (1998) Kinesin from the plant pathogenic fungus Ustilago maydis is involved in vacuole formation and cytoplasmic migration. J Cell Sci 111:2235–2246

    Google Scholar 

  • Svelto O, Hanna DC (1989) Principles of lasers, 3rd edn. Plenum, New York, p. 494

    Google Scholar 

  • Swedlow JR (2003) Quantitative fluorescence microscopy and image deconvolution. Meth Cell Biol 72:346–367

    Google Scholar 

  • Szewczyk E, Oakley BR (2011) Microtubule dynamics in mitosis in Aspergillus nidulans. Fungal Genet Biol 48(10):998–999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tcherniak A, Reznik C, Link S, Landes CF (2009) Fluorescence correlation spectroscopy: criteria for analysis in complex systems. AnalytChem 81:746–754

    CAS  Google Scholar 

  • Thorn K (2010) Spinning-disk confocal microscopy of yeast. Meth Enzmol 470:581–602

    Article  Google Scholar 

  • Torralba S, Heath IB (2002) Analysis of three separate probes suggests the absence of endocytosis in Neurospora crassa hyphae. Fungal Genet Biol 37:221–232

    Article  PubMed  Google Scholar 

  • Tsujia T, Kawai-Nomaa S, Packb C-G, Terajimaa H, Yajimac J, Nishizakac T, Kinjod M, Taguchia H (2011) Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells. Biochem Bioph Res Co 405(4):638–643

    Article  CAS  Google Scholar 

  • Umbaugh SE (2011) Digital image processing and analysis. CRC Press, Boca Raton

    Google Scholar 

  • Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792

    Article  CAS  PubMed  Google Scholar 

  • Wallace W, Schaefer LH, Swedlow JR (2001) A workingperson’s guide to deconvolution in light microscopy. Biotechniques 31(5):1076–1078

    CAS  PubMed  Google Scholar 

  • Wang E, Babbey CM, Dunn KW (2005) Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems. J Microsc 218:148–59

    Article  CAS  PubMed  Google Scholar 

  • Waterman-Storer CM, Shaw SL, Salmon ED (1997) Production and presentation of digital movies. Trends Cell Biol 7:503–506

    Article  CAS  PubMed  Google Scholar 

  • Wokosin DL, Centonze VE, Crittenden S, White J (1996) Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser. Bioimaging 4:208–214

    Article  Google Scholar 

  • Woyke T, Winkelmann G, Roberson RW, Pettit GR, Pettit RK (2002) Three-dimensional visualization of microtubules during the Cryptococcus neoformans cell cycle and effects of auristatin PHE. Antimicrob Agents Chemother 46:3802–3808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yaffe MP, Stuurman N, Vale RD (2003) Mitochondrial positioning in fission yeast is driven by association with dynamic microtubules and mitotic spindle poles. Proc Natl Acad Sci U S A. 100:11424–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zekert N, Fischer R (2009) The Aspergillus nidulans kinesin-3 uncA motor moves vesicles along a subpopulation of microtubules. Mol Biol Cell 20:673–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa R. Mouriño-Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mouriño-Pérez, R., Roberson, R. (2015). Confocal Laser-scanning Microscopy in Filamentous Fungi. In: Dahms, T., Czymmek, K. (eds) Advanced Microscopy in Mycology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-22437-4_1

Download citation

Publish with us

Policies and ethics