Skip to main content

Epigenetics of Endocrine Tumors in Women and Dietary Prevention

  • Chapter
Preventive Nutrition

Part of the book series: Nutrition and Health ((NH))

  • 2451 Accesses

Abstract

Endocrine tumors, primarily breast, followed by uterine, ovarian, and cervical cancer, are frequent malignancies in women (Fig. 9.1). The development of these tumors can be linked to activation of oncogenes whose protein products contribute to stimulation of cancer processes such as cell proliferation, inflammation, invasion, angiogenesis, and metastasis; and/or inactivation of tumor suppressor genes which oppose the function of oncogenes and encode for proteins that inhibit cell proliferation, regulate DNA repair, and induce apoptosis. According to the Knudson “two-hits” hypothesis, hereditary cancers result from inherited gene mutations (first hit) in one copy of a cancer susceptibility gene (Fig. 9.2a). This is also referred to as haploinsufficiency when a single-copy loss in a tumor suppressor gene is sufficient for promotion of cancer. The second allele (second hit) is usually inactivated somatically (loss of heterozygosity) during growth and development (http://www.cancer.org). Interestingly, only a small fraction (5–10 %) of cancers is linked to germline mutations of tumor suppressor genes and tends to occur early in life. Examples of tumor suppressor genes mutated in hereditary cancers are Rb, p53, Apc, BRCA-1, and BRCA-2. This scenario differs from that of sporadic tumors which represent the majority of tumors. They usually occur later in life in the context of other genetic and/or environmental insults (Nature 476:163–9, 2011) and when both alleles for a specific tumor suppressor gene are somatically inactivated. Therefore, understanding the mechanisms that lead to somatic inactivation of tumor suppressor genes provides rich opportunities for prevention of both hereditary and sporadic tumors including endocrine malignancies in women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society. 2015. http://www.cancer.org. Accessed 02 May 2015.

  2. Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumour suppression. Nature. 2011;476(7359):163–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 2007;8(4):286–98.

    Article  PubMed  CAS  Google Scholar 

  4. Levy-Lahad E, Friedman E. Cancer risks among BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2007;96(1):11–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Knower KC, To SQ, Leung YK, Ho SM, Clyne CD. Endocrine disruption of the epigenome: a breast cancer link. Endocr Relat Cancer. 2014;21(2):T33–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kennedy RD, Quinn JE, Johnston PG, et al. BRCA1: mechanisms of inactivation and implications for management of patients. Lancet. 2002;360(9338):1007–14.

    Article  PubMed  CAS  Google Scholar 

  7. Rodríguez-Rodero S, Delgado-Álvarez E, Fernández AF, Fernández-Morera JL, Menéndez-Torre E, Fraga MF. Epigenetic alterations in endocrine-related cancer. Endocr Relat Cancer. 2014;21(4):R319–30.

    Article  PubMed  CAS  Google Scholar 

  8. Khan SI, Aumsuwan P, Khan IA, et al. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem Res Toxicol. 2012;25(1):61–73.

    Article  PubMed  CAS  Google Scholar 

  9. Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011;3(4):503–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger A. Epigenetic mechanisms in anti-cancer actions of bioactive food components—the implications in cancer prevention. Br J Pharmacol. 2012;167(2):279–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Huang Y, Nayak S, Jankowitz R, Davidson NE, Oesterreich S. Epigenetics in breast cancer: what’s new? Breast Cancer Res. 2011;13(6):225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mullan PB, Quinn JE, Harkin DP. The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene. 2006;25(43):5854–63.

    Article  PubMed  CAS  Google Scholar 

  13. Parvin JD. Overview of history and progress in BRCA1 research: the first BRCA1 decade. Cancer Biol Ther. 2004;3(6):505–8.

    Article  PubMed  CAS  Google Scholar 

  14. Murphy CG, Moynahan ME. BRCA gene structure and function in tumor suppression: a repair-centric perspective. Cancer J. 2010;16(1):39–47.

    Article  PubMed  CAS  Google Scholar 

  15. Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71.

    Article  PubMed  CAS  Google Scholar 

  16. Ford D, Easton DF, Stratton M, Narod S, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998;62(3):676–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Easton DF, Ford D, Bishop DT. Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet. 1995;56(1):265–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Magdinier F, Ribieras S, Lenoir GM, et al. Down-regulation of BRCA1 in human sporadic breast cancer; analysis of DNA methylation patterns of the putative promoter region. Oncogene. 1998;17(24):3169–76.

    Article  PubMed  CAS  Google Scholar 

  19. Rice JC, Massey-Brown KS, Futscher BW. Aberrant methylation of the BRCA1 CpG island promoter is associated with decreased BRCA1 mRNA in sporadic breast cancer cells. Oncogene. 1998;17:1807–12.

    Article  PubMed  CAS  Google Scholar 

  20. Seery LT, Knowlden JM, Gee JM, et al. BRCA1 expression levels predict distant metastasis of sporadic breast cancers. Int J Cancer. 1999;84(3):258–62.

    Article  PubMed  CAS  Google Scholar 

  21. Thompson ME, Jensen RA, Obermiller PS, et al. Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat Genet. 1995;9:444–50.

    Article  PubMed  CAS  Google Scholar 

  22. Yoshikawa K, Honda K, Inamoto T, et al. Reduction of BRCA1 protein expression in Japanese sporadic breast carcinomas and its frequent loss in BRCA1-associated cases. Clin Cancer Res. 1999;5(6):1249–61.

    PubMed  CAS  Google Scholar 

  23. Taylor J, Lymboura M, Pace PE, et al. An important role for BRCA1 in breast cancer progression is indicated by its loss in a large proportion of non-familial breast cancers. Int J Cancer. 1998;79(4):334–42.

    Article  PubMed  CAS  Google Scholar 

  24. Wilson CA, Ramos L, Villaseñor MR, et al. Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas. Nat Genet. 1999;21(2):236–40.

    Article  PubMed  CAS  Google Scholar 

  25. Rice JC, Ozcelik H, Maxeiner P, et al. Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. Carcinogenesis. 2000;21(9):1761–5.

    Article  PubMed  CAS  Google Scholar 

  26. Dobrovic A, Simpfendorfer D. Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res. 1997;57(16):3347–50.

    PubMed  CAS  Google Scholar 

  27. Hosey AM, Gorski JJ, Murray MM, et al. Molecular basis for estrogen receptor alpha deficiency in BRCA1-linked breast cancer. J Natl Cancer Inst. 2007;99(22):1683–94.

    Article  PubMed  CAS  Google Scholar 

  28. King MC, Wieand S, Hale K, Lee M, Walsh T, Owens K, Tait J, Ford L, Dunn BK, Costantino J, Wickerham L, Wolmark N, Fisher B, National Surgical Adjuvant Breast and Bowel Project. Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. JAMA. 2001;286(18):2251–6.

    Article  PubMed  CAS  Google Scholar 

  29. Chiang JW, Karlan BY, Cass L, Baldwin RL. BRCA1 promoter methylation predicts adverse ovarian cancer prognosis. Gynecol Oncol. 2006;101(3):403–10.

    Article  PubMed  CAS  Google Scholar 

  30. Wilcox CB, Baysal BE, Gallion HH, Strange MA, DeLoia JA. High-resolution methylation analysis of the BRCA1 promoter in ovarian tumors. Cancer Genet Cytogenet. 2005;159(2):114–22.

    Article  PubMed  CAS  Google Scholar 

  31. Lips EH, Mulder L, Oonk A, et al. Triple-negative breast cancer: BRCAness and concordance of clinical features with BRCA1-mutation carriers. Br J Cancer. 2013;108(10):2172–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Li Y, Chen H, Hardy TM, Tollefsbol TO. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein. PLoS One. 2013;8(1):e54369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. J Nutr. 2007;137(1 Suppl):223S–8.

    PubMed  CAS  Google Scholar 

  34. Ghadirian P, Narod S, Fafard E, et al. Breast cancer risk in relation to the joint effect of BRCA mutations and diet diversity. Breast Cancer Res Treat. 2009;117(2):417–22.

    Article  PubMed  CAS  Google Scholar 

  35. Fan S, Meng Q, Auborn K, et al. BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. Br J Cancer. 2006;94(3):407–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. de Assis S, Warri A, Benitez C, et al. Protective effects of prepubertal genistein exposure on mammary tumorigenesis are dependent on BRCA1 expression. Cancer Prev Res (Phila). 2011;4(9):1436–48.

    Article  CAS  Google Scholar 

  37. Day JK, Bauer AM, DesBordes C, et al. Genistein alters methylation patterns in mice. J Nutr. 2002;132(8 Suppl):2419S–23.

    PubMed  CAS  Google Scholar 

  38. Li H, Xu W, Huang Y, et al. Genestein demethylates the promoter of CHD5 and inhibits neuroblastoma growth in vivo. Int J Mol Med. 2012;30(5):1081–6.

    PubMed  CAS  Google Scholar 

  39. Bosviel R, Dumollard E, Déchelotte P, et al. Can soy phytoestrogens decrease DNA methylation in BRCA1 and BRCA2 oncosuppressor genes in breast cancer? OMICS. 2012;16(5):235–44.

    Article  PubMed  CAS  Google Scholar 

  40. Fanti P, Stephenson TJ, Kaariainen IM, Rezkalla B, Tsukamoto Y, Morishita T, Nomura M, Kitiyakara C, Custer LJ, Franke AA. Serum isoflavones and soya food intake in Japanese, Thai and American end-stage renal disease patients on chronic haemodialysis. Nephrol Dial Transplant. 2003;18(9):1862–8.

    Article  PubMed  CAS  Google Scholar 

  41. Franke AA, Custer LJ, Tanaka Y. Isoflavones in human breast milk and other biological fluids. Am J Clin Nutr. 1998;68(6 Suppl):1466S–73.

    PubMed  CAS  Google Scholar 

  42. Dolinoy DC, Weidman JR, Waterland RA, et al. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect. 2006;114(4):567–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Vanhees K, Coort S, Ruijters EJ, et al. Epigenetics: prenatal exposure to genistein leaves a permanent signature on the hematopoietic lineage. FASEB J. 2011;25(2):797–807.

    Article  PubMed  CAS  Google Scholar 

  44. Greathouse KL, Bredfeldt T, Everitt JI, et al. Environmental estrogens differentially engage the histone methyltransferase EZH2 to increase risk of uterine tumorigenesis. Mol Cancer Res. 2012;10(4):546–57.

    Article  PubMed  CAS  Google Scholar 

  45. Cabanes A, Wang M, Olivo S, et al. Prepubertal estradiol and genistein exposures up-regulate BRCA1 mRNA and reduce mammary tumorigenesis. Carcinogenesis. 2004;25(5):741–8.

    Article  PubMed  CAS  Google Scholar 

  46. Murrill WB, Brown NM, Zhang JX, et al. Prepubertal genistein exposure suppresses mammary cancer and enhances gland differentiation in rats. Carcinogenesis. 1996;17(7):1451–7.

    Article  PubMed  CAS  Google Scholar 

  47. Zaman MS, Maher DM, Khan S, Jaggi M, Chauhan SC. Current status and implications of microRNAs in ovarian cancer diagnosis and therapy. J Ovarian Res. 2012;5(1):44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Papoutsis AJ, Lamore SD, Wondrak GT, et al. Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J Nutr. 2010;140(9):1607–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Papoutsis AJ, Borg JL, Selmin OI, et al. BRCA-1 promoter hypermethylation and silencing induced by the aromatic hydrocarbon receptor-ligand TCDD are prevented by resveratrol in MCF-7 cells. J Nutr Biochem. 2012;23(10):1324–32.

    Article  PubMed  CAS  Google Scholar 

  50. Boocock DJ, Faust GE, Patel KR, Schinas AM, Brown VA, et al. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Biomarkers Prev. 2007;16:1246–52.

    Article  PubMed  CAS  Google Scholar 

  51. Patel KR, Brown VA, Jones DJ, Britton RG, Hemingway D, Miller AS, et al. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res. 2010;70:7392–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Papoutsis AJ, Selmin OI, Borg JL, Romagnolo DF. Gestational exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin induces BRCA-1 promoter hypermethylation and reduces BRCA-1 expression in mammary tissue of rat offspring: Preventive effects of resveratrol. Mol Carcinog. 2015;54(4):261–9.

    Article  PubMed  CAS  Google Scholar 

  53. Lee H, Zhang P, Herrmann A, et al. Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation. Proc Natl Acad Sci U S A. 2012;109(20):7765–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tili E, Michaille JJ, Alder H, et al. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem Pharmacol. 2010;80(12):2057–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Tili E, Michaille JJ, Adair B, et al. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis. 2010;31(9):1561–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Banerjee N, Talcott S, Safe S, et al. Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and vivo: potential role of miRNA-27a and miRNA-155 in cell survival and inflammation. Breast Cancer Res Treat. 2012;136(1):21–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Stolzenberg-Solomon RZ, Chang SC, Leitzmann MF, et al. Folate intake, alcohol use, and postmenopausal breast cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am J Clin Nutr. 2006;83:895–904.

    PubMed  CAS  Google Scholar 

  58. Maruti SS, Ulrich CM, White E. Folate and one-carbon metabolism nutrients from supplements and diet in relation to breast cancer risk. Am J Clin Nutr. 2009;89(2):624–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Jakubowska A, Gronwald J, Menkiszak J, et al. Methylenetetrahydrofolate reductase polymorphisms modify BRCA1-associated breast and ovarian cancer risks. Breast Cancer Res Treat. 2007;104(3):299–308.

    Article  PubMed  CAS  Google Scholar 

  60. Blaschke K, Ebata KT, Karimi MM, Zepeda-Martínez JA, Goyal P, Mahapatra S, Tam A, Laird DJ, Hirst M, Rao A, Lorincz MC, Ramalho-Santos M. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature. 2013;500(7461):222–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C, Beringer G, Brikbak NJ, Yuan X, Cantley LC, Richardson AL, Pandolfi PP. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell. 2013;154(2):311–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Mourits MJ, De Vries EG, Willemse PH, Ten Hoor KA, Hollema H, Van der Zee AG. Tamoxifen treatment and gynecologic side effects: a review. Obstet Gynecol. 2001;97(5 Pt 2):855–66.

    Article  PubMed  CAS  Google Scholar 

  63. Maximov PY, Lewis-Wambi JS, Jordan VC. The paradox of oestradiol-induced breast cancer cell growth and apoptosis. Curr Signal Transduct Ther. 2009;4(2):88–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Nass SJ, Herman JG, Gabrielson E, Iversen PW, Parl FF, Davidson NE, Graff JR. Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Res. 2000;60(16):4346–8.

    PubMed  CAS  Google Scholar 

  65. Hervouet E, Cartron PF, Jouvenot M, Delage-Mourroux R. Epigenetic regulation of estrogen signaling in breast cancer. Epigenetics. 2013;8(3):237–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Huynh KT, Chong KK, Greenberg ES, Hoon DS. Epigenetics of estrogen receptor-negative primary breast cancer. Expert Rev Mol Diagn. 2012;12(4):371–82.

    Article  PubMed  CAS  Google Scholar 

  67. Ramos EA, Camargo AA, Braun K, Slowik R, Cavalli IJ, Ribeiro EM, Pedrosa Fde O, de Souza EM, Costa FF, Klassen G. Simultaneous CXCL12 and ESR1 CpG island hypermethylation correlates with poor prognosis in sporadic breast cancer. BMC Cancer. 2010;10:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Wei M, Xu J, Dignam J, Nanda R, et al. Estrogen receptor alpha, BRCA1, and FANCF promoter methylation occur in distinct subsets of sporadic breast cancers. Breast Cancer Res Treat. 2008;111(1):113–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Prabhu JS, Wahi K, Korlimarla A, Correa M, Manjunath S, Raman N, Srinath BS, Sridhar TS. The epigenetic silencing of the estrogen receptor (ER) by hypermethylation of the ESR1 promoter is seen predominantly in triple-negative breast cancers in Indian women. Tumour Biol. 2012;33(2):315–23.

    Article  PubMed  CAS  Google Scholar 

  70. Yang X, Phillips DL, Ferguson AT, Nelson WG, Herman JG, Davidson NE. Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res. 2001;61(19):7025–9.

    PubMed  CAS  Google Scholar 

  71. Yang X, Ferguson AT, Nass SJ, Phillips DL, Butash KA, Wang SM, Herman JG, Davidson NE. Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res. 2000;60(24):6890–4.

    PubMed  CAS  Google Scholar 

  72. Bovenzi V, Momparler RL. Antineoplastic action of 5-aza-2′-deoxycytidine and histone deacetylase inhibitor and their effect on the expression of retinoic acid receptor beta and estrogen receptor alpha genes in breast carcinoma cells. Cancer Chemother Pharmacol. 2001;48(1):71–6.

    Article  PubMed  CAS  Google Scholar 

  73. Jang ER, Lim SJ, Lee ES, Jeong G, Kim TY, Bang YJ, Lee JS. The histone deacetylase inhibitor trichostatin A sensitizes estrogen receptor alpha-negative breast cancer cells to tamoxifen. Oncogene. 2004;23(9):1724–36.

    Article  PubMed  CAS  Google Scholar 

  74. Sato N, Yamakawa N, Masuda M, Sudo K, Hatada I, Muramatsu M. Genome-wide DNA methylation analysis reveals phytoestrogen modification of promoter methylation patterns during embryonic stem cell differentiation. PLoS One. 2011;6(4):e19278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS. Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res. 2005;11(19 Pt 1):7033–41.

    Article  PubMed  CAS  Google Scholar 

  76. Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K, Hirata H, Li LC, Zhao H, Okino ST, Place RF, Pookot D, Dahiya R. Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res. 2008;68(8):2736–44.

    Article  PubMed  CAS  Google Scholar 

  77. Li Y, Meeran SM, Patel SN, Chen H, et al. Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Mol Cancer. 2013;12:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Xu X, Duncan AM, Merz BE, Kurzer MS. Effects of soy isoflavones on estrogen and phytoestrogen metabolism in premenopausal women. Cancer Epidemiol Biomarkers Prev. 1998;7(12):1101–8.

    PubMed  CAS  Google Scholar 

  79. Fritz WA, Wang J, Eltoum IE, Lamartiniere CA. Dietary genistein down-regulates androgen and estrogen receptor expression in the rat prostate. Mol Cell Endocrinol. 2002;186(1):89–99.

    Article  PubMed  CAS  Google Scholar 

  80. Mai Z, Blackburn GL, Zhou JR. Soy phytochemicals synergistically enhance the preventive effect of tamoxifen on the growth of estrogen-dependent human breast carcinoma in mice. Carcinogenesis. 2007;28(6):1217–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ju YH, Allred CD, Allred KF, Karko KL, Doerge DR, Helferich WG. Physiological concentrations of dietary genistein dose-dependently stimulate growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in athymic nude mice. J Nutr. 2001;131(11):2957–62.

    PubMed  CAS  Google Scholar 

  82. Romagnolo DF, Selmin OI. Flavonoids and cancer prevention: a review of the evidence. J Nutr Gerontol Geriatr. 2012;31(3):206–38.

    Article  PubMed  Google Scholar 

  83. Helferich WG, Andrade JE, Hoagland MS. Phytoestrogens and breast cancer: a complex story. Inflammopharmacology. 2008;16(5):219–26.

    Article  PubMed  CAS  Google Scholar 

  84. Qin W, Zhu W, Shi H, et al. Soy isoflavones have an antiestrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutr Cancer. 2009;61(2):238–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Meeran SM, Patel SN, Li Y, Shukla S, Tollefsbol TO. Bioactive dietary supplements reactivate ER expression in ER-negative breast cancer cells by active chromatin modifications. PLoS One. 2012;7(5):e37748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Fang MZ, Wang Y, Ai N, et al. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003;63(22):7563–70.

    PubMed  CAS  Google Scholar 

  87. Lee WJ, Shim JY, Zhu BT. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol. 2005;68(4):1018–30.

    Article  PubMed  CAS  Google Scholar 

  88. Nian H, Delage B, Ho E, Dashwood RH. Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen. 2009;50(3):213–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Nie J, Xishi L, Guo SW. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in adenomyosis and its rectification by a histone deacetylase inhibitor and a demethylation agent. Reprod Sci. 2010;17(11):995–1005.

    Article  CAS  Google Scholar 

  90. Yang S, Jia Y, Liu X, Winters C, Wang X, Zhang Y, Devor EJ, Hovey AM, Reyes HD, Xiao X, Xu Y, Dai D, Meng X, Thiel KW, Domann FE, Leslie KK. Systematic dissection of the mechanisms underlying progesterone receptor downregulation in endometrial cancer. Oncotarget. 2014;5(20):9783–97.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Taxvig C, Elleby A, Sonne-Hansen K, Bonefeld-Jørgensen EC, Vinggaard AM, Lykkesfeldt AE, Nellemann C. Effects of nutrition relevant mixtures of phytoestrogens on steroidogenesis, aromatase, estrogen, and androgen activity. Nutr Cancer. 2010;62(1):122–31.

    Article  PubMed  CAS  Google Scholar 

  92. Leo JC, Wang SM, Guo CH, Aw SE, Zhao Y, Li JM, Hui KM, Lin VC. Gene regulation profile reveals consistent anticancer properties of progesterone in hormone-independent breast cancer cells transfected with progesterone receptor. Int J Cancer. 2005;117(4):561–8.

    Article  PubMed  CAS  Google Scholar 

  93. Liu T, Niu Y, Feng Y, Niu R, Yu Y, Lv A, Yang Y. Methylation of CpG islands of p16(INK4a) and cyclinD1 overexpression associated with progression of intraductal proliferative lesions of the breast. Hum Pathol. 2008;39(11):1637–46.

    Article  PubMed  CAS  Google Scholar 

  94. Wang L, Tang L, Xie R, Nie W, Chen L, Guan X. p16 promoter hypermethylation is associated with increased breast cancer risk. Mol Med Rep. 2012;6(4):904–8.

    PubMed  Google Scholar 

  95. Moselhy SS, Kumosani TA, Kamal IH, Jalal JA, Abdul Jabaar HS, Dalol A. Hypermethylation of P15, P16, and E-cadherin genes in ovarian cancer. Toxicol Ind Health. 2013. (Epub ahead of print).

    Google Scholar 

  96. Askari M, Sobti RC, Nikbakht M, Sharma SC. Aberrant promoter hypermethylation of p21 (WAF1/CIP1) gene and its impact on expression and role of polymorphism in the risk of breast cancer. Mol Cell Biochem. 2013;382(1–2):19–26.

    Article  PubMed  CAS  Google Scholar 

  97. Pethe V, Shekhar PV. Estrogen inducibility of c-Ha-ras transcription in breast cancer cells. Identification of functional estrogen-responsive transcriptional regulatory elements in exon 1/intron 1 of the c-Ha-ras gene. J Biol Chem. 1999;274(43):30969–78.

    Article  PubMed  CAS  Google Scholar 

  98. Bigey P, Ramchandani S, Theberge J, Araujo FD, Szyf M. Transcriptional regulation of the human DNA Methyltransferase (dnmt1) gene. Gene. 2000;242(1–2):407–18.

    Article  PubMed  CAS  Google Scholar 

  99. Radpour R, Barekati Z, Haghighi MM, Kohler C, Asadollahi R, Torbati PM, Holzgreve W, Zhong XY. Correlation of telomere length shortening with promoter methylation profile of p16/Rb and p53/p21 pathways in breast cancer. Mod Pathol. 2010;23(5):763–72.

    Article  PubMed  CAS  Google Scholar 

  100. Crous-Bou M, Fung TT, Prescott J, Julin B, Du M, Sun Q, Rexrode KM, Hu FB, De Vivo I. Mediterranean diet and telomere length in Nurses’ Health Study: population based cohort study. BMJ. 2014;349:g667.

    Article  Google Scholar 

  101. Manzanares MA, Solanas M, Moral R, Escrich R, Vela E, Costa I, Escrich E. Dietary extra-virgin olive oil and corn oil differentially modulate the mRNA expression of xenobiotic-metabolizing enzymes in the liver and in the mammary gland in a rat chemically induced breast cancer model. Eur J Cancer Prev. 2015;24(3):215–22.

    Article  PubMed  CAS  Google Scholar 

  102. Moral R, Solanas M, Garcia G, Grau L, Vela E, Escrich R, Escrich E. High corn oil and high extra virgin olive oil diets have different effects on the expression of differentiation-related genes in experimental mammary tumors. Oncol Rep. 2008;20(2):429–35.

    PubMed  CAS  Google Scholar 

  103. Saxena A, Dhillon VS, Shahid M, Khalil HS, Rani M, Prasad DAST, Hedau S, Hussain A, Naqvi RA, Deo SV, Shukla NK, DAS BC, Husain SA. GSTP1 methylation and polymorphism increase the risk of breast cancer and the effects of diet and lifestyle in breast cancer patients. Exp Ther Med. 2012;4(6):1097–103.

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Miyake T, Nakayama T, Naoi Y, Yamamoto N, Otani Y, Kim SJ, Shimazu K, Shimomura A, Maruyama N, Tamaki Y, Noguchi S. GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER-negative breast cancer. Cancer Sci. 2012;103(5):913–20.

    Article  PubMed  CAS  Google Scholar 

  105. Pandey M, Shulka S, Gupta S. Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer. 2010;126(11):2520–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  106. Dagdemir A, Durif J, Ngollo M, Bignon YJ, Bernard-Gallon D. Histone lysine trimethylation or acetylation can be modulated by phytoestrogen, estrogen or anti-HDAC in breast cancer cell lines. Epigenomics. 2013;5(1):51–63.

    Article  PubMed  CAS  Google Scholar 

  107. Xie Q, Bai Q, Zou LY, Zhang QY, Zhou Y, Chang H, Yi L, Zhu JD, Mi MT. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes Chromosomes Cancer. 2014;53:422–31.

    Article  PubMed  CAS  Google Scholar 

  108. Vardi A, Bosviel R, Rabiau N, Adjakly M, Satih S, Dechelotte P, Boiteux JP, Fontana L, Bignon YJ, Guy L, Bernard-Gallon DJ. Soy phytoestrogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells. In Vivo. 2010;24(4):393–400.

    PubMed  CAS  Google Scholar 

  109. Llanos AA, Dumitrescu RG, Brasky TM, Liu Z, Mason JB, Marian C, Makambi KH, Spear SL, Kallakury BV, Freudenheim JL, Shields PG. Relationships among folate, alcohol consumption, gene variants in one-carbon metabolism and p16INK4a methylation and expression in healthy breast tissues. Carcinogenesis. 2015;36(1):60–7.

    Article  PubMed  Google Scholar 

  110. Lubecka-Pietruszewska K, Kaufman-Szymczyk A, Stefanska B, Fabianowska-Majewska K. Folic acid enforces DNA methylation-mediated transcriptional silencing of PTEN, APC and RARbeta2 tumour suppressor genes in breast cancer. Biochem Biophys Res Commun. 2013;430(2):623–8.

    Article  PubMed  CAS  Google Scholar 

  111. Pepe C, Guidugli L, Sensi E, et al. Methyl group metabolism gene polymorphisms as modifier of breast cancer risk in Italian BRCA1/2 carriers. Breast Cancer Res Treat. 2007;103(1):29–36.

    Article  PubMed  CAS  Google Scholar 

  112. Cho K, Mabasa L, Bae S, Walters MW, Park CS. Maternal high-methyl diet suppresses mammary carcinogenesis

    Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the Arizona Biomedical Research Commission (ADHS14-082995), US ARMY Medical Research and Materiel Command (BC134119), Soy Health Research Program (SHRP), and the Arizona Cancer Center Support Grant P30CA23074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato F. Romagnolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Romagnolo, D.F., Selmin, O.I. (2015). Epigenetics of Endocrine Tumors in Women and Dietary Prevention. In: Bendich, A., Deckelbaum, R. (eds) Preventive Nutrition. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-22431-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22431-2_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22430-5

  • Online ISBN: 978-3-319-22431-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics