Skip to main content

Diet–Gene Interactions: Haptoglobin Genotype and Nutrient Status

  • Chapter
Preventive Nutrition

Part of the book series: Nutrition and Health ((NH))

Abstract

Many disease states are independently influenced by both diet and genes. Dietary and genetic factors can also act synergistically to have a joint effect on human health through diet–gene interaction. For example, the protein products of genes (enzymes, transporters, receptors, hormones, etc.) may interact with nutritional constituents of foods to influence metabolic processes and health status. Commonly occurring polymorphisms in the genes that code for these protein products can lead to differences both in the amount of protein produced and in how efficiently that protein functions, thus leading to individual differences in processes such as digestion and metabolism. Among researchers and healthcare practitioners, there is a growing interest in utilizing genetic information to predict and manage the large interindividual differences in response to intake of food and nutrients. Recent advances in human genomics have enabled cost-effective and rapid detection of variations in genes affecting nutrient metabolism, but their full impact on nutrient requirements remains to be elucidated. The common haptoglobin polymorphism is an example of a polymorphism which may have an important influence on chronic disease via its impact on nutrient status. The objective of this chapter is to introduce the concept of diet–gene interactions and to discuss the various effects that genes can have on metabolic responses to food, focusing on the common haptoglobin polymorphism as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Adenine

C:

Cytosine

CHD:

Coronary heart disease

CNV:

Copy number variant

DNA:

Deoxyribonucleic acid

G:

Guanine

GWAS:

Genome-wide association study

Hb:

Hemoglobin

HDL:

High-density lipoprotein

Hp:

Haptoglobin

LDL:

Low-density lipoprotein

MI:

Myocardial infarction

PKU:

Phenylketonuria

RDA:

Recommended dietary allowance

SNP:

Single nucleotide polymorphism

T:

Thymine

References

  1. El-Sohemy A. Nutrigenetics Forum Nutr. 2007;60:25–30. Epub 2007/08/09.

    Article  PubMed  CAS  Google Scholar 

  2. Ordovas JM. Genotype-phenotype associations: modulation by diet and obesity. Obesity. 2008;16 Suppl 3:S40–6. Epub 2008/12/17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kaput J, Rodriguez RL. Nutritional genomics: the next frontier in the postgenomic era. Physiol Genomics. 2004;16(2):166–77. Epub 2004/01/17.

    Article  PubMed  CAS  Google Scholar 

  4. Eny KM, El-Sohemy A. Genetic determinants of ingestive behaviour: sensory, energy homeostasis and food reward aspects of ingestive behaviour. In: Dube LBA, Dagher A, Drewnowski A, Lebel J, James P, Richard D, Yada RY, editors. Obesity prevention: the role of society and brain on individual behavior. London: Elsevier; 2010.

    Google Scholar 

  5. Garcia-Bailo B, Toguri C, Eny KM, El-Sohemy A. Genetic variation in taste and its influence on food selection. OMICS. 2009;13(1):69–80. Epub 2008/08/09.

    Article  PubMed  CAS  Google Scholar 

  6. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–11. Epub 2000/01/11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mennella JA, Pepino MY, Duke FF, Reed DR. Age modifies the genotype-phenotype relationship for the bitter receptor TAS2R38. BMC Genet. 2010;11:60. Epub 2010/07/03.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Khataan NH, Stewart L, Brenner DM, Cornelis MC, El-Sohemy A. TAS2R38 genotypes and phenylthiocarbamide bitter taste perception in a population of young adults. J Nutrigenet Nutrigenomics. 2009;2(4-5):251–6. Epub 2010/05/21.

    Article  PubMed  CAS  Google Scholar 

  9. Swallow DM. Genetics of lactase persistence and lactose intolerance. Annu Rev Genet. 2003;37:197–219. Epub 2003/11/18.

    Article  PubMed  CAS  Google Scholar 

  10. Itan Y, Jones BL, Ingram CJ, Swallow DM, Thomas MG. A worldwide correlation of lactase persistence phenotype and genotypes. BMC Evol Biol. 2010;10:36. Epub 2010/02/11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Swagerty Jr DL, Walling AD, Klein RM. Lactose intolerance. Am Fam Physician. 2002;65(9):1845–50. Epub 2002/05/23.

    PubMed  Google Scholar 

  12. Yang A, Palmer AA, de Wit H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology (Berl). 2010;211(3):245–57. Epub 2010/06/10.

    Article  CAS  Google Scholar 

  13. Domschke K, Gajewska A, Winter B, Herrmann MJ, Warrings B, Muhlberger A, et al. ADORA2A Gene variation, caffeine, and emotional processing: a multi-level interaction on startle reflex. Neuropsychopharmacology. 2012;37(3):759–69. Epub 2011/10/21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Josse AR, Da Costa LA, Campos H, El-Sohemy A. Associations between polymorphisms in the AHR and CYP1A1-CYP1A2 gene regions and habitual caffeine consumption. Am J Clin Nutr. 2012;96(3):665–71. Epub 2012/08/03.

    Article  PubMed  Google Scholar 

  15. Cornelis MC, El-Sohemy A, Campos H. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am J Clin Nutr. 2007;86(1):240–4. Epub 2007/07/10.

    PubMed  CAS  Google Scholar 

  16. Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA. 2006;295(10):1135–41. Epub 2006/03/09.

    Article  PubMed  CAS  Google Scholar 

  17. Palatini P, Ceolotto G, Ragazzo F, Dorigatti F, Saladini F, Papparella I, et al. CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. J Hypertens. 2009;27(8):1594–601. Epub 2009/05/20.

    Article  PubMed  CAS  Google Scholar 

  18. Palatini P, Benetti E, Mos L, Garavelli G, Mazzer A, Cozzio S, et al. Association of coffee consumption and CYP1A2 polymorphism with risk of impaired fasting glucose in hypertensive patients. Eur J Epidemiol. 2015. Epub 2015/01/18.

    Google Scholar 

  19. Descamps OS, Tenoutasse S, Stephenne X, Gies I, Beauloye V, Lebrethon MC, et al. Management of familial hypercholesterolemia in children and young adults: consensus paper developed by a panel of lipidologists, cardiologists, paediatricians, nutritionists, gastroenterologists, general practitioners and a patient organization. Atherosclerosis. 2011;218(2):272–80. Epub 2011/07/19.

    Article  PubMed  CAS  Google Scholar 

  20. Masson LF, McNeill G, Avenell A. Genetic variation and the lipid response to dietary intervention: a systematic review. Am J Clin Nutr. 2003;77(5):1098–111. Epub 2003/04/30.

    PubMed  CAS  Google Scholar 

  21. Li TY, Zhang C, Asselbergs FW, Qi L, Rimm E, Hunter DJ, et al. Interaction between dietary fat intake and the cholesterol ester transfer protein TaqIB polymorphism in relation to HDL-cholesterol concentrations among US diabetic men. Am J Clin Nutr. 2007;86(5):1524–9. Epub 2007/11/10.

    PubMed  CAS  Google Scholar 

  22. Zhang C, Lopez-Ridaura R, Rimm EB, Rifai N, Hunter DJ, Hu FB. Interactions between the -514C-> T polymorphism of the hepatic lipase gene and lifestyle factors in relation to HDL concentrations among US diabetic men. Am J Clin Nutr. 2005;81(6):1429–35. Epub 2005/06/09.

    PubMed  CAS  Google Scholar 

  23. Ordovas JM, Corella D, Demissie S, Cupples LA, Couture P, Coltell O, et al. Dietary fat intake determines the effect of a common polymorphism in the hepatic lipase gene promoter on high-density lipoprotein metabolism: evidence of a strong dose effect in this gene-nutrient interaction in the Framingham Study. Circulation. 2002;106(18):2315–21. Epub 2002/10/31.

    Article  PubMed  CAS  Google Scholar 

  24. Nettleton JA, Steffen LM, Ballantyne CM, Boerwinkle E, Folsom AR. Associations between HDL-cholesterol and polymorphisms in hepatic lipase and lipoprotein lipase genes are modified by dietary fat intake in African American and White adults. Atherosclerosis. 2007;194(2):e131–40. Epub 2006/12/13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wang TJ, Zhang F, Richards JB, Kestenbaum B, Meurs JB, Berry D, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376(9736):180–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet. 2010;19(13):2739–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Fu L, Yun F, Oczak M, Wong BY, Vieth R, Cole DE. Common genetic variants of the vitamin D binding protein (DBP) predict differences in response of serum 25-hydroxyvitamin D [25(OH)D] to vitamin D supplementation. Clin Biochem. 2009;42(10-11):1174–7. Epub 2009/03/24.

    Article  PubMed  CAS  Google Scholar 

  28. Sinotte M, Diorio C, Berube S, Pollak M, Brisson J. Genetic polymorphisms of the vitamin D binding protein and plasma concentrations of 25-hydroxyvitamin D in premenopausal women. Am J Clin Nutr. 2009;89(2):634–40. Epub 2009/01/01.

    Article  PubMed  CAS  Google Scholar 

  29. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nat Genet. 2001;29(3):306–9. Epub 2001/10/16.

    Article  PubMed  CAS  Google Scholar 

  30. Luan J, Browne PO, Harding AH, Halsall DJ, O’Rahilly S, Chatterjee VK, et al. Evidence for gene-nutrient interaction at the PPARgamma locus. Diabetes. 2001;50(3):686–9. Epub 2001/03/15.

    Article  PubMed  CAS  Google Scholar 

  31. DiLella AG, Kwok SC, Ledley FD, Marvit J, Woo SL. Molecular structure and polymorphic map of the human phenylalanine hydroxylase gene. Biochemistry. 1986;25(4):743–9. Epub 1986/02/25.

    Article  PubMed  CAS  Google Scholar 

  32. Surtees R, Blau N. The neurochemistry of phenylketonuria. Eur J Pediatr. 2000;159 Suppl 2:S109–13. Epub 2000/10/24.

    Article  PubMed  CAS  Google Scholar 

  33. Melamed-Frank M, Lache O, Enav BI, Szafranek T, Levy NS, Ricklis RM, et al. Structure-function analysis of the antioxidant properties of haptoglobin. Blood. 2001;98(13):3693–8. Epub 2001/12/12.

    Article  PubMed  CAS  Google Scholar 

  34. Nielsen DE, El-Sohemy A. Disclosure of genetic information and change in dietary intake: a randomized controlled trial. PLoS One. 2014;9(11), e112665. Epub 2014/11/15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Asleh R, Guetta J, Kalet-Litman S, Miller-Lotan R, Levy AP. Haptoglobin genotype- and diabetes-dependent differences in iron-mediated oxidative stress in vitro and in vivo. Circ Res. 2005;96(4):435–41. Epub 2005/01/22.

    Article  PubMed  CAS  Google Scholar 

  36. Gutteridge JM. The antioxidant activity of haptoglobin towards haemoglobin-stimulated lipid peroxidation. Biochim Biophys Acta. 1987;917(2):219–23. Epub 1987/02/14.

    Article  PubMed  CAS  Google Scholar 

  37. Carter K, Worwood M. Haptoglobin: a review of the major allele frequencies worldwide and their association with diseases. Int J Lab Hematol. 2007;29(2):92–110.

    Article  PubMed  Google Scholar 

  38. Levy AP, Asleh R, Blum S, Levy NS, Miller-Lotan R, Kalet-Litman S, et al. Haptoglobin: basic and clinical aspects. Antioxid Redox Signal. 2010;12(2):293–304.

    Article  PubMed  CAS  Google Scholar 

  39. Asleh R, Levy AP. In vivo and in vitro studies establishing haptoglobin as a major susceptibility gene for diabetic vascular disease. Vasc Health Risk Manag. 2005;1(1):19–28. Epub 2007/02/27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Koch W, Latz W, Eichinger M, Roguin A, Levy AP, Schomig A, et al. Genotyping of the common haptoglobin Hp 1/2 polymorphism based on PCR. Clin Chem. 2002;48(9):1377–82.

    PubMed  CAS  Google Scholar 

  41. Asleh R, Marsh S, Shilkrut M, Binah O, Guetta J, Lejbkowicz F, et al. Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circ Res. 2003;92(11):1193–200. Epub 2003/05/17.

    Article  PubMed  CAS  Google Scholar 

  42. Asleh R, Miller-Lotan R, Aviram M, Hayek T, Yulish M, Levy JE, et al. Haptoglobin genotype is a regulator of reverse cholesterol transport in diabetes in vitro and in vivo. Circ Res. 2006;99(12):1419–25. Epub 2006/11/04.

    Article  PubMed  CAS  Google Scholar 

  43. Cid MC, Grant DS, Hoffman GS, Auerbach R, Fauci AS, Kleinman HK. Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J Clin Invest. 1993;91(3):977–85. Epub 1993/03/01.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Edwards DH, Griffith TM, Ryley HC, Henderson AH. Haptoglobin-haemoglobin complex in human plasma inhibits endothelium dependent relaxation: evidence that endothelium derived relaxing factor acts as a local autocoid. Cardiovasc Res. 1986;20(8):549–56. Epub 1986/08/01.

    Article  PubMed  CAS  Google Scholar 

  45. Langlois MR, Delanghe JR. Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem. 1996;42(10):1589–600. Epub 1996/10/01.

    PubMed  CAS  Google Scholar 

  46. Bamm VV, Tsemakhovich VA, Shaklai M, Shaklai N. Haptoglobin phenotypes differ in their ability to inhibit heme transfer from hemoglobin to LDL. Biochemistry. 2004;43(13):3899–906. Epub 2004/03/31.

    Article  PubMed  CAS  Google Scholar 

  47. Levy AP, Levy JE, Kalet-Litman S, Miller-Lotan R, Levy NS, Asaf R, et al. Haptoglobin genotype is a determinant of iron, lipid peroxidation, and macrophage accumulation in the atherosclerotic plaque. Arterioscler Thromb Vasc Biol. 2007;27(1):134–40.

    Article  PubMed  CAS  Google Scholar 

  48. Guetta J, Strauss M, Levy NS, Fahoum L, Levy AP. Haptoglobin genotype modulates the balance of Th1/Th2 cytokines produced by macrophages exposed to free hemoglobin. Atherosclerosis. 2007;191(1):48–53.

    Article  PubMed  CAS  Google Scholar 

  49. Asleh R, Blum S, Kalet-Litman S, Alshiek J, Miller-Lotan R, Asaf R, et al. Correction of HDL dysfunction in individuals with diabetes and the haptoglobin 2-2 genotype. Diabetes. 2008;57(10):2794–800. Epub 2008/07/05.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cahill LE, Levy AP, Chiuve SE, Jensen MK, Wang H, Shara NM, et al. Haptoglobin genotype is a consistent marker of coronary heart disease risk among individuals with elevated glycosylated hemoglobin. J Am Coll Cardiol. 2013;61(7):728–37. Epub 2013/01/15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Chen YC, Lee CC, Huang CY, Huang HB, Yu CC, Ho YC, et al. Haptoglobin polymorphism as a risk factor for chronic kidney disease: a case-control study. Am J Nephrol. 2011;33(6):510–4. Epub 2011/05/07.

    Article  PubMed  CAS  Google Scholar 

  52. Pavon EJ, Munoz P, Lario A, Longobardo V, Carrascal M, Abian J, et al. Proteomic analysis of plasma from patients with systemic lupus erythematosus: increased presence of haptoglobin alpha2 polypeptide chains over the alpha1 isoforms. Proteomics. 2006;6 Suppl 1:S282–92. Epub 2006/03/18.

    Article  PubMed  Google Scholar 

  53. Papp M, Foldi I, Nemes E, Udvardy M, Harsfalvi J, Altorjay I, et al. Haptoglobin polymorphism: a novel genetic risk factor for celiac disease development and its clinical manifestations. Clin Chem. 2008;54(4):697–704. Epub 2008/02/09.

    Article  PubMed  CAS  Google Scholar 

  54. Atkinson SH, Rockett K, Sirugo G, Bejon PA, Fulford A, O’Connell MA, et al. Seasonal childhood anaemia in West Africa is associated with the haptoglobin 2-2 genotype. PLoS Med. 2006;3(5), e172. Epub 2006/04/28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Vanuytsel T, Vermeire S, Cleynen I. The role of Haptoglobin and its related protein, Zonulin, in inflammatory bowel disease. Tissue Barriers. 2013;1(5), e27321. Epub 2014/05/29.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Atkinson SH, Mwangi TW, Uyoga SM, Ogada E, Macharia AW, Marsh K, et al. The haptoglobin 2-2 genotype is associated with a reduced incidence of Plasmodium falciparum malaria in children on the coast of Kenya. Clin Infect Dis. 2007;44(6):802–9. Epub 2007/02/17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Vitalis Z, Altorjay I, Tornai I, Palatka K, Kacska S, Palyu E, et al. Phenotypic polymorphism of haptoglobin: a novel risk factor for the development of infection in liver cirrhosis. Hum Immunol. 2011;72(4):348–54. Epub 2011/01/26.

    Article  PubMed  CAS  Google Scholar 

  58. Napolioni V, Gianni P, Carpi FM, Concetti F, Lucarini N. Haptoglobin (HP) polymorphisms and human longevity: a cross-sectional association study in a Central Italy population. Clin Chim Acta. 2011;412(7–8):574–7.

    Article  PubMed  CAS  Google Scholar 

  59. Hamad M, Awadallah S. Age group-associated variations in the pattern of Hp type distribution in Jordanians. Clin Chim Acta. 2000;300(1-2):75–81.

    Article  PubMed  CAS  Google Scholar 

  60. Cahill LE, Jensen MK, Chasman DI, Hazra A, Levy AP, Rimm EB. Currently available versions of genome-wide association studies cannot be used to query the common haptoglobin copy number variant. J Am Coll Cardiol. 2013;62(9):860–1. Epub 2013/06/12.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Delanghe JR, Langlois MR, De Buyzere ML, Torck MA. Vitamin C deficiency and scurvy are not only a dietary problem but are codetermined by the haptoglobin polymorphism. Clin Chem. 2007;53(8):1397–400.

    Article  PubMed  CAS  Google Scholar 

  62. Hughes RE. Nonscorbutic effects of vitamin C: biochemical aspects. Proc R Soc Med. 1977;70(2):86–9. Epub 1977/02/01.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Schleicher RL, Carroll MD, Ford ES, Lacher DA. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003-2004 National Health and Nutrition Examination Survey (NHANES). Am J Clin Nutr. 2009;90(5):1252–63. Epub 2009/08/14.

    Article  PubMed  CAS  Google Scholar 

  64. Cahill L, Corey PN, El-Sohemy A. Vitamin C deficiency in a population of young Canadian adults. Am J Epidemiol. 2009;170(4):464–71. Epub 2009/07/15.

    Article  PubMed  Google Scholar 

  65. Wrieden WL, Hannah MK, Bolton-Smith C, Tavendale R, Morrison C, Tunstall-Pedoe H. Plasma vitamin C and food choice in the third Glasgow MONICA population survey. J Epidemiol Community Health. 2000;54(5):355–60. Epub 2000/05/18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Mosdol A, Erens B, Brunner EJ. Estimated prevalence and predictors of vitamin C deficiency within UK’s low-income population. J Public Health (Oxf). 2008;30(4):456–60. Epub 2008/09/25.

    Article  Google Scholar 

  67. Paolisso G, D’Amore A, Balbi V, Volpe C, Galzerano D, Giugliano D, et al. Plasma vitamin C affects glucose homeostasis in healthy subjects and in non-insulin-dependent diabetics. Am J Physiol. 1994;266(2 Pt 1):E261–8.

    PubMed  CAS  Google Scholar 

  68. Toohey L, Harris MA, Allen KG, Melby CL. Plasma ascorbic acid concentrations are related to cardiovascular risk factors in African-Americans. J Nutr. 1996;126(1):121–8. Epub 1996/01/01.

    PubMed  CAS  Google Scholar 

  69. Johnston CS, Beezhold BL, Mostow B, Swan PD. Plasma vitamin C is inversely related to body mass index and waist circumference but not to plasma adiponectin in nonsmoking adults. J Nutr. 2007;137(7):1757–62.

    PubMed  CAS  Google Scholar 

  70. Block G, Dietrich M, Norkus EP, Morrow JD, Hudes M, Caan B, et al. Factors associated with oxidative stress in human populations. Am J Epidemiol. 2002;156(3):274–85.

    Article  PubMed  Google Scholar 

  71. Ford ES, Liu S, Mannino DM, Giles WH, Smith SJ. C-reactive protein concentration and concentrations of blood vitamins, carotenoids, and selenium among United States adults. Eur J Clin Nutr. 2003;57(9):1157–63.

    Article  PubMed  CAS  Google Scholar 

  72. Boekholdt SM, Meuwese MC, Day NE, Luben R, Welch A, Wareham NJ, et al. Plasma concentrations of ascorbic acid and C-reactive protein, and risk of future coronary artery disease, in apparently healthy men and women: the EPIC-Norfolk prospective population study. Br J Nutr. 2006;96(3):516–22.

    PubMed  CAS  Google Scholar 

  73. Jacob RA, Sotoudeh G. Vitamin C function and status in chronic disease. Nutr Clin Care. 2002;5(2):66–74.

    Article  PubMed  Google Scholar 

  74. Simon JA, Hudes ES, Tice JA. Relation of serum ascorbic acid to mortality among US adults. J Am Coll Nutr. 2001;20(3):255–63. Epub 2001/07/11.

    Article  PubMed  CAS  Google Scholar 

  75. Loria CM, Whelton PK, Caulfield LE, Szklo M, Klag MJ. Agreement among indicators of vitamin C status. Am J Epidemiol. 1998;147(6):587–96.

    Article  PubMed  CAS  Google Scholar 

  76. Langlois MR, Delanghe JR, De Buyzere ML, Bernard DR, Ouyang J. Effect of haptoglobin on the metabolism of vitamin C. Am J Clin Nutr. 1997;66(3):606–10.

    PubMed  CAS  Google Scholar 

  77. Lee YW, Min WK, Chun S, Lee W, Park H, Lee YK, et al. Lack of association between oxidized LDL-cholesterol concentrations and haptoglobin phenotypes in healthy subjects. Ann Clin Biochem. 2004;41(Pt 6):485–7.

    Article  PubMed  CAS  Google Scholar 

  78. Na N, Delanghe JR, Taes YE, Torck M, Baeyens WR, Ouyang J. Serum vitamin C concentration is influenced by haptoglobin polymorphism and iron status in Chinese. Clin Chim Acta. 2006;365(1-2):319–24.

    Article  PubMed  CAS  Google Scholar 

  79. Delanghe JR, Langlois MR, De Buyzere ML, Na N, Ouyang J, Speeckaert MM, et al. Vitamin C deficiency: more than just a nutritional disorder. Gene Nutr. 2011;6(4):341–6. Epub 2011/05/27.

    Article  CAS  Google Scholar 

  80. Torek M. Avoiding the Dire Straits: an inquiry into food provisions and scurvy in the maritime and military history of China and wider East Asia: Harrassowitz Verlag; 2009.

    Google Scholar 

  81. Torek M. The issue of food provision and scurvy in East and West: a comparative enquiry into medieval knowledge of provisioning, medicine and seafaring history. In: A. S, editor. East Asian maritime history I: trade and transfer across the East Asian “Mediterranean”: Harrassowitz Verlag; 2005. p. 275-88.

    Google Scholar 

  82. Cahill LE, El-Sohemy A. Haptoglobin genotype modifies the association between dietary vitamin C and serum ascorbic acid deficiency. Am J Clin Nutr. 2010;92(6):1494–500. Epub 2010/10/12.

    Article  PubMed  CAS  Google Scholar 

  83. Asleh R, Levy AP. Divergent effects of alpha-tocopherol and vitamin C on the generation of dysfunctional HDL associated with diabetes and the Hp 2-2 genotype. Antioxid Redox Signal. 2010;12(2):209–17. Epub 2009/09/23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Weissgerber TL, Gandley RE, McGee PL, Spong CY, Myatt L, Leveno KJ, et al. Haptoglobin phenotype, preeclampsia risk and the efficacy of vitamin C and E supplementation to prevent preeclampsia in a racially diverse population. PLoS One. 2013;8(4), e60479. Epub 2013/04/11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Zingg JM, Azzi A, Meydani M. Genetic polymorphisms as determinants for disease-preventive effects of vitamin E. Nutr Rev. 2008;66(7):406–14. Epub 2008/08/01.

    Article  PubMed  Google Scholar 

  86. Goldenstein H, Levy NS, Levy AP. Haptoglobin genotype and its role in determining heme-iron mediated vascular disease. Pharmacol Res. 2012;66(1):1–6. Epub 2012/04/03.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Vardi M, Blum S, Levy AP. Haptoglobin genotype and cardiovascular outcomes in diabetes mellitus—natural history of the disease and the effect of vitamin E treatment. Meta-analysis of the medical literature. Eur J Intern Med. 2012;23(7):628–32. Epub 2012/09/04.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Langlois MR, Martin ME, Boelaert JR, Beaumont C, Taes YE, De Buyzere ML, et al. The haptoglobin 2-2 phenotype affects serum markers of iron status in healthy males. Clin Chem. 2000;46(10):1619–25. Epub 2000/10/06.

    PubMed  CAS  Google Scholar 

  89. Delanghe JR, Langlois MR. Haptoglobin polymorphism and body iron stores. Clin Chem Lab Med. 2002;40(3):212–6. Epub 2002/05/15.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah E. Cahill R.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cahill, L.E., Rimm, E.B. (2015). Diet–Gene Interactions: Haptoglobin Genotype and Nutrient Status. In: Bendich, A., Deckelbaum, R. (eds) Preventive Nutrition. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-22431-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22431-2_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22430-5

  • Online ISBN: 978-3-319-22431-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics