Skip to main content

Linking Prenatal Nutrition to Adult Mental Health

  • Chapter
Preventive Nutrition

Part of the book series: Nutrition and Health ((NH))

Abstract

The effects on child health and development of exposure to either general malnutrition or to specific micronutrient deficiencies during early life are well documented (Annals of the New York Academy of Sciences 1136:172–184, 2008). For example, prenatal folate deficiency increases the risk of neural tube defects, and low maternal iodine intake can cause fetal iodine deficiency syndrome and cretinism (Lancet 338(8760):131–137, 1991; Lancet 1(7694):308–310, 1971; Journal of Nutrition 130:493S–495S, 2000; Nutrients 3:265–273, 2011). However, the impact of malnutrition during early life is not restricted to infancy and childhood. It is now clear that there are latent effects that may only become evident in adult life. The prenatal antecedents responsible for these latent effects can arise from exposures at any point from conception onward (Mothers, babies and health in later life. Edinburgh, Scotland: Churchill Livingstone, 1998; Schizophrenia Bulletin 34(6):1054–1063, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delisle HF. Poverty: the double burden of malnutrition in mothers and the intergenerational impact. Ann NY Acad Sci. 2008;1136:172–84.

    Article  PubMed  Google Scholar 

  2. MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet. 1991;338(8760):131–7.

    Article  Google Scholar 

  3. Pharoah PO, Buttfield IH, Hetzel BS. Neurological damage to the fetus resulting from severe iodine deficiency during pregnancy. Lancet. 1971;1(7694):308–10.

    Article  PubMed  CAS  Google Scholar 

  4. Hetzel BS. Iodine and neuropsychological development. J Nutr. 2000;130:493S–5S.

    PubMed  CAS  Google Scholar 

  5. Skeaff S, Iodine A. Deficiency in pregnancy: the effect on neurodevelopment in the child. Nutrients. 2011;3:265–73.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barker DJ. Mothers, babies and health in later life. Edinburgh: Churchill Livingstone; 1998.

    Google Scholar 

  7. Brown AS, Susser ES. Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr Bull. 2008;34(6):1054–63.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stein ZA, Susser M, Saenger G, et al. Famine and human development: the Dutch hunger winter of 1944–1945. New York: Oxford University Press; 1975.

    Google Scholar 

  9. Lumey LH. Decreased birthweights in infants after maternal in uteroexposure to the Dutch famine of 1944–1945. Paediatr Perinat Epidemiol. 1992;6(2):240–53.

    Article  PubMed  CAS  Google Scholar 

  10. Kuh D, Ben-Shlomo Y. A life course approach to chronic disease epidemiology. New York: Oxford University Press; 2004.

    Book  Google Scholar 

  11. Huang JS, Lee TA, Lu MC. Prenatal programming of childhood overweight and obesity. Matern Child Health J. 2007;11(5):461–73.

    Article  PubMed  Google Scholar 

  12. Kyle UG, Pichard C. The Dutch Famine of 1944–1945: a pathophysiological model of long-term consequences of wasting disease. Curr Opin Clin Nutr Metab Care. 2006;9(4):388–94.

    Article  PubMed  Google Scholar 

  13. Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol. 2005;20(3):345–52.

    Article  PubMed  CAS  Google Scholar 

  14. Lumey LH, Stein AD, Susser E. Prenatal famine and adult health. Annu Rev Public Health. 2011;32:237–62.

    Article  PubMed  CAS  Google Scholar 

  15. An overstretched hypothesis. Lancet. 2011;357:405.

    Google Scholar 

  16. Susser E, Hoek HW, Brown A. Neurodevelopmental disorders after prenatal famine: the story of the Dutch Famine Study. Am J Epidemiol. 1998;147(3):213–6.

    Article  PubMed  CAS  Google Scholar 

  17. Susser E, Neugebauer R, Hoek HW, et al. Schizophrenia after prenatal famine. Further evidence. Arch Gen Psychiatry. 1996;53(1):25–31.

    Article  PubMed  CAS  Google Scholar 

  18. Hulshoff Pol HE, Hoek HW, Susser E, et al. Prenatal exposure to famine and brain morphology in schizophrenia. Am J Psychiatry. 2000;157(7):1170–2.

    Article  PubMed  CAS  Google Scholar 

  19. Hoek HW, Brown AS, Susser E. The Dutch famine and schizophrenia spectrum disorders. Soc Psychiatry Psychiatr Epidemiol. 1998;33(8):373–9.

    Article  PubMed  CAS  Google Scholar 

  20. Franzek E, Sprangers N, Janssens ACJW, et al. Prenatal exposure to the 1944–5 Dutch “hunger winter” and addiction later in life. Addiction. 2008;103:433–8.

    Article  PubMed  Google Scholar 

  21. Neugebauer R, Hoek HW, Susser E. Prenatal exposure to wartime famine and development of antisocial personality disorder in early adulthood. JAMA. 1999;282(5):455–62.

    Article  PubMed  CAS  Google Scholar 

  22. Brown A, Susser ES, Lin SP, et al. Increased risk of affective disorders in males after second trimester prenatal exposure to the Dutch Hunger Winter of 1944–55. Br J Psychiatry. 1995;166:601–6.

    Article  PubMed  CAS  Google Scholar 

  23. Brown A, van Os J, Driessens C, et al. Further evidence of relation between prenatal famine and major affective disorder. Am J Psychiatry. 2000;157:190–5.

    Article  PubMed  CAS  Google Scholar 

  24. Stein AD, Pierik FH, Verrips GHW, et al. Maternal exposure to the Dutch Famine before conception and during pregnancy: quality of life and depressive symptoms in adult offspring. Epidemiology. 2009;20:909–15.

    Article  PubMed  Google Scholar 

  25. Stein Z, Susser M, Saenger G, et al. Nutrition and mental performance. Science. 1972;178(62):708–13.

    Article  PubMed  CAS  Google Scholar 

  26. De Groot RH, Stein AD, et al. Prenatal famine and IQ aged 59. Int J Epidemiol. 2011;40:327–37.

    Article  PubMed  PubMed Central  Google Scholar 

  27. St. Clair D, Xu M, Wang P, et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA. 2005;294(5):557–62.

    Article  PubMed  CAS  Google Scholar 

  28. Xu MQ, Sun WS, Liu BX, et al. Prenatal malnutrition and adult schizophrenia: further evidence from the 1959–61 Chinese famine. Schizophr Bull. 2009;35(3):568–76.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Susser E, St. Clair D. Prenatal famine and adult mental illness; interpreting concordant and discordant results from Dutch and Chinese famines. Soc Sci Med. 2013;97:325–30.

    Article  PubMed  Google Scholar 

  30. World Health Organization. The World Health Report 2001: mental health: new understanding, new hope. Geneva: World Health Organization; 2001.

    Google Scholar 

  31. Fusar-Poli P, Borgwardt S, Bechdolf A, et al. The Psychosis high risk state: a comprehensive state of the art review. JAMA. 2013;70:107–20.

    Google Scholar 

  32. Pasamanick B, Rogers ME, Lilienfeld AM. Pregnancy experience and the development of behavior disorders in children. Am J Psychiatry. 1956;112(8):613–8.

    Article  PubMed  CAS  Google Scholar 

  33. Hoek HW, Susser E, Buck KA, et al. Schizoid personality disorder after prenatal exposure to famine. Am J Psychiatry. 1996;153(12):1637–9.

    Article  PubMed  CAS  Google Scholar 

  34. Owen MJ, Craddock N, Jablensky A. The genetic deconstruction of psychosis. Schizophr Bull. 2007;33(4):905–11.

    Article  PubMed  PubMed Central  Google Scholar 

  35. St. Clair D. Structural and copy number variants in the human genome: implications for psychiatry. Br J Psychiatry. 2013;202:5–6.

    Article  PubMed  Google Scholar 

  36. Neugebauer R. Accumulating evidence for prenatal nutritional origins of mental disorders. JAMA. 2005;294(5):621–3.

    Article  PubMed  CAS  Google Scholar 

  37. Picker JD, Coyle JT. Do maternal folate and homocysteine levels play a role in neurodevelopmental processes that increase risk for schizophrenia? Harv Rev Psychiatry. 2005;13(4):197–205.

    Article  PubMed  Google Scholar 

  38. McClellan JM, Susser E, King MC. Maternal famine, de novo mutations, and schizophrenia. JAMA. 2006;296(5):582–4.

    Article  PubMed  CAS  Google Scholar 

  39. Gluckman PD, Hanson AM, Cooper C. The effect of in utero and early life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Seckl J. Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Mol Cell Endocrinol. 2001;185:61–71.

    Article  PubMed  CAS  Google Scholar 

  41. Moisiadis VG, Matthews SG. Glucocorticoids and fetal programming part one: outcomes. Nat Rev Endocrinol. 2014;10:391–402.

    Article  PubMed  CAS  Google Scholar 

  42. Mosiadis VG, Matthews SG. Glucocorticoids and fetal programming part one: mechanisms. Nat Rev Endocrinol. 2014;10:403–11.

    Article  CAS  Google Scholar 

  43. Khashan A, Abel KM, McNamee R, et al. Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Arch Gen Psychiatry. 2008;65(2):146–52.

    Article  PubMed  Google Scholar 

  44. Abel K, Heuvelman HP, Jorgensen L, et al. Severe bereavement stress during the prenatal and childhood periods and risk of psychosis in later life: a population based cohort study. Br Med J. 2014;348:f7679.

    Article  CAS  Google Scholar 

  45. Kong A. Rate of de novo mutations and importance of fathers age to disease risk. Nature. 2012;488:471–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Malaspina D, Harlap S, Fennig S, et al. Advancing paternal age and the risk of schizophrenia. Arch Gen Psychiatry. 2001;58(4):361–7.

    Article  PubMed  CAS  Google Scholar 

  47. Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23(15):5293–300.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Drake AJ, Walker BR, et al. The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J Endocrinol. 2004;180:1–16.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang S, Rattanatray L, MacLaughlin SM, et al. Periconceptual under nutrition in normal and overweight ewes leads to increased adrenal growth and epigenetic changes in adrenal IGF2/H19 gene in offspring. FASEB J. 2010;24:2772–82.

    Article  PubMed  CAS  Google Scholar 

  50. Radford E, Ito M, Shi H, et al. In utero undernourishment perturbs adult sperm methylome and intergenerational metabolism. Science. 2014;345:786–93.

    Article  CAS  Google Scholar 

  51. Petronis A. The origin of schizophrenia: genetic thesis, epigenetic antithesis, and resolving synthesis. Biol Psychiatry. 2004;55(10):965–70.

    Article  PubMed  CAS  Google Scholar 

  52. Kirkbride JB, Susser E, Kundakovic M, et al. Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects. Epigenomics. 2012;2012(4):303–15.

    Article  CAS  Google Scholar 

  53. Perrin M, Brown AS, Malaspina D. Aberrant epigenetic regulation could explain the relationship of paternal age to schizophrenia. Schizophr Bull. 2007;33(6):1270–3.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105(44):17046–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Tobi EW, Goeman JJ, Monajemi R. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun. 2014;5:5592.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Wahlberg K, Wynne LC, Oja H, et al. Gene–environment interaction in vulnerability to schizophrenia: findings from the Finnish adoptive family study of schizophrenia. Am J Psychiatry. 1997;154:355–62.

    Article  PubMed  CAS  Google Scholar 

  57. McGrath J, Brown A, St. Clair D. Prevention of schizophrenia—role of dietary factors. Schizophr Bull. 2011;37:272–83.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Insel B, Schaefer CA, McKeague IW, Susser ES, Brown AS. Maternal iron deficiency and the risk of schizophrenia in offspring. Arch Gen Psychiatry. 2008;65(10):1136–44.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Brown J, Foster HD. Schizophrenia: an update of the selenium deficiency hypothesis. J Orthomol Med. 1996;11(4):211–22.

    Google Scholar 

  60. Foster H. The geography of schizophrenia: possible links with selenium and calcium deficiencies, inadequate exposure to sunlight and industrialization. J Orthomol Med. 1988;3(3):135–40.

    Google Scholar 

  61. Brown J. Role of selenium and other trace elements in the geography of schizophrenia. Schizophr Bull. 1994;20(2):387–98.

    Article  PubMed  Google Scholar 

  62. Vidovic B, Dorđević B, Milovanović S, et al. Selenium zinc and plasma copper levels in patients with schizophrenia relationship to metabolic risk factors. Biol Trace Elem Res. 2013;1–3:22–8.

    Article  CAS  Google Scholar 

  63. Behne D, Hilmert H, Scheid S. Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim Biophys Acta. 1988;966(1):12–21.

    Article  PubMed  CAS  Google Scholar 

  64. Castaño A, Cano J, Machado A. Low selenium diet affects monamine turnover differentially in substantia nigra and striatum. J Neurochem. 1993;61(4):1302–7.

    Article  PubMed  Google Scholar 

  65. Benton D. Selenium intake, mood, and other aspects of psychological functioning. Nutr Neurosci. 2002;5(6):363–74.

    Article  PubMed  CAS  Google Scholar 

  66. Schweizer U, Schomburg L. Selenium, selenoproteins and brain function. In: Hatfield D, Berry MJ, Gladyshev VN, editors. Selenium: its molecular biology and role. New York: Springer; 2006.

    Google Scholar 

  67. Yan J, Barrett JN. Purification from bovine serum of a survival-promoting factor for cultured neurons and its identification as Selenoprotein-P. J Neurosci. 1998;18(21):8682–91.

    PubMed  CAS  Google Scholar 

  68. Savaskan N, Bräuer AJ, Kühbacher M, et al. Selenium deficiency increases susceptibility to glutamate-induced excitotoxicity. FASEB J. 2003;17(1):112–4.

    PubMed  CAS  Google Scholar 

  69. Mitchell J, Nicol F, Beckett GJ, Arthur JR. Selenoprotein expression and brain development in preweanling selenium- and iodine-deficient rats. J Mol Endocrinol. 1998;20:203–10.

    Article  PubMed  CAS  Google Scholar 

  70. Xiang N, Zhao R, Song G, Zhong W. Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells. Carcinogenesis. 2008;29(11):2175–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Davis C, Uthus EO, Finley JW. Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon. J Nutr. 2000;130:2903–9.

    PubMed  CAS  Google Scholar 

  72. Uthus E, Ross SA. Dietary selenium affects homocysteine metabolism differently in Fisher-344 rats and CD-1 mice. J Nutr. 2007;137:1132–6.

    PubMed  CAS  Google Scholar 

  73. Hu Y, Diamond AM. Role of glutathione peroxidase 1 in breast cancer: loss of heterozygosity and allelic differences in the response to selenium. Cancer Res. 2003;63:3347–51.

    PubMed  CAS  Google Scholar 

  74. Lei C, Niu X, Wei J, Zhu J, et al. Interaction of glutathione peroxidase-1 and selenium in endemic dilated cardiomyopathy. Clin Chim Acta. 2009;399(1–2):102–8.

    Article  PubMed  CAS  Google Scholar 

  75. Andrews R. Unification of the findings in schizophrenia by reference to the effects of gestational zinc deficiency. Med Hypotheses. 1990;31:141–53.

    Article  PubMed  CAS  Google Scholar 

  76. Andrews R. An update of the zinc deficiency theory of schizophrenia. Identification of the sex determining system as the site of action of reproductive zinc deficiency. Med Hypotheses. 1992;38:284–91.

    Article  PubMed  CAS  Google Scholar 

  77. Merialdi M, Caulfield LE, Zavaleta N, et al. Adding zinc to prenatal iron and folate tablets improves fetal neurobehavioral development. Am J Obstet Gynecol. 1999;180(2):483–90.

    Article  PubMed  CAS  Google Scholar 

  78. Harding A, Dreosti IE, Tulsi RS. Zinc deficiency in the 11 day rat embryo: a scanning and transmission electron microscope study. Life Sci. 1988;42:889–96.

    Article  PubMed  CAS  Google Scholar 

  79. McKenzie J, Fosmire GJ, Sandstead HH. Zinc deficiency during the latter third of pregnancy: effects on fetal rat brain, liver, and placenta. J Nutr. 1975;105(11):1466–75.

    PubMed  CAS  Google Scholar 

  80. Wang F, Bian W, Kong LW, et al. Maternal zinc deficiency impairs brain nesting expression in prenatal and postnatal mice. Cell Res. 2001;11(2):135–41.

    Article  PubMed  CAS  Google Scholar 

  81. Halas E, Hanlon M. Intrauterine nutrition and aggression. Nature. 1975;257:221.

    Article  PubMed  CAS  Google Scholar 

  82. Halas E, Sandstead HH. Some effects of prenatal zinc deficiency on behavior of the adult rat. Pediatr Res. 1975;9(2):94–7.

    Article  PubMed  CAS  Google Scholar 

  83. Halas E, Hunt CD, Eberhardt MJ. Learning and memory disabilities in young adult rats from mildly zinc deficient dams. Physiol Behav. 1986;37:451–8.

    Article  PubMed  CAS  Google Scholar 

  84. Bruno R, Song Y, Leonard SW, et al. Dietary zinc restriction in rats alters antioxidant status and increases plasma F2 isoprostanes. J Nutr Biochem. 2007;18:509–18.

    Article  PubMed  CAS  Google Scholar 

  85. Ho E, Ames BN. Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkB, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc Natl Acad Sci U S A. 2002;99(26):16770–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Ho E. Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem. 2004;15:572–8.

    Article  PubMed  CAS  Google Scholar 

  87. Castro C, Kaspin LC, Chen SS, et al. Zinc deficiency increases the frequency of single-strand DNA breaks in rat liver. Nutr Res. 1992;12:721–36.

    Article  CAS  Google Scholar 

  88. Olin K, Shigenaga MK, Ames BN, et al. Maternal dietary zinc influences DNA strand break and 8-hydroxy-2-deoxyguanosine levels in infant rhesus monkey liver. Proc Soc Exp Biol Med. 1993;203:461–6.

    Article  PubMed  CAS  Google Scholar 

  89. Bestor T. Activation of mammalian DNA methyltransferase by cleavage of a ZN binding regulatory domain. EMBO J. 1992;11(7):2611–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Salozhin S, Prokhorchuck EB, Georgiev GP. Methylation of DNA—one of the major epigenetic markers. Biochemistry. 2005;70(5):525–32.

    PubMed  CAS  Google Scholar 

  91. Ohlsson R, Renkawitz R, Lobanenkov V. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet. 2001;17(9):520–7.

    Article  PubMed  CAS  Google Scholar 

  92. Loukinov D, Pugacheva E, Vatolin S, et al. BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci U S A. 2002;99(10):6806–11.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Chowanadisai W, Lönnerdal B, Kelleher SL. Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem. 2006;281(51):39699–707.

    Article  PubMed  CAS  Google Scholar 

  94. Wang K, Zhou B, Kuo YM, et al. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet. 2002;71:66–73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Susser E, Brown AS, Gorman JM. Prenatal exposures in schizophrenia. Arlington: American Psychiatric Publishing; 1999.

    Google Scholar 

  96. van der Put N, van Straaten HWM, Trijbels FJM, et al. Folate, homocysteine and neural tube defects: an overview. Exp Biol Med. 2001;226:243–70.

    Google Scholar 

  97. Nisha A, Numata S, Tajima A, et al. Meta-analysis of blood homocysteine levels for gender and genetic association studies of MTHFR C677T polymorphism in Schizophrenia. Schizophr Bull. 2014;40:1154–63.

    Article  Google Scholar 

  98. Fenech M. The role of folic acid and Vitamin B12 in genomic stability of human cells. Mutat Res. 2001;475(1–2):57–67.

    Article  PubMed  CAS  Google Scholar 

  99. Teo T, Fenech M. The interactive effect of alcohol and folic acid on genome stability in human WIL2-NS cells measured using the cytokinesis-block micronucleus cytome assay. Mutat Res. 2008;657(1):32–8.

    Article  PubMed  CAS  Google Scholar 

  100. Bagnyukova TV, Powell CL, Pavliv O, et al. Induction of oxidative stress and DNA damage in rat brain by a folate/methyl-deficient diet. Brain Res. 2008;1237:44–51.

    Article  PubMed  CAS  Google Scholar 

  101. Young S, Eskenazi B, Marchetti FM, et al. The association of folate, zinc and antioxidant intake with sperm aneuploidy in healthy non-smoking men. Hum Reprod. 2008;23(5):1014–22.

    Article  PubMed  CAS  Google Scholar 

  102. Boxmeer J, Smit M, Utomo E, et al. Low folate in seminal plasma in associated with increased sperm DNA damage. Fertil Steril. 2009;92(2):548–56.

    Article  PubMed  CAS  Google Scholar 

  103. Pembrey ME, Bygren LO, Golding J. The nature of human transgenerational responses. In: Jirtle HJ, Tyson FL, editors. Environmental epigenomics in health and disease epigenetics and disease origins. Heidelberg: Springer; 2013. p. 257–71.

    Chapter  Google Scholar 

  104. Wolff G, Kodell RL, Moore SR, et al. Maternal epigenetics and methyl supplements affect agoutigene expression in Avy/amice. FASEB J. 1998;12:949–57.

    PubMed  CAS  Google Scholar 

  105. Cooney C, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr. 2002;132:S2393–400.

    Google Scholar 

  106. Brown AS, Bottiglieri T, Schaefer CA, et al. Elevated prenatal homocysteine levels as a risk factor for schizophrenia. Arch Gen Psychiatry. 2007;64:31–9.

    Article  PubMed  CAS  Google Scholar 

  107. Suren P, Roth C, Bresnahan M, et al. Association between maternal use of folic acid supplements and risk of autism spectral disorders in children. JAMA. 2013;309(6):570–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  108. Roth C, Magnus P, Schjolberg S, Stoltenburg C, et al. Folic acid supplements in pregnancy and severe language delay in children. J Am Med Assoc. 2011;306:1566–73.

    Article  CAS  Google Scholar 

  109. Schmidt RJ, Hansen RL, Hartiala J, et al. Prenatal vitamins, one-carbon metabolism gene variants, and risk of autism. Epidemiology. 2011;22:476–85.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Milne D, Canfield WK, Mahalko JR, et al. Effect of oral folic acid supplements on zinc, copper, and iron absorption and excretion. Am J Clin Nutr. 1984;39:535–9.

    PubMed  CAS  Google Scholar 

  111. Ghishan F, Said HM, Wilson PC, et al. Intestinal transport of zinc and folic acid: a mutual inhibitory effect. Am J Clin Nutr. 1986;43:258–62.

    PubMed  CAS  Google Scholar 

  112. Keizer S, Gibson RS, O’Connor DL. Postpartum folic acid supplementation of adolescents: impact on maternal folate and zinc status and milk composition. Am J Clin Nutr. 1995;62:377–84.

    PubMed  CAS  Google Scholar 

  113. Davis C, Uthus EO. Dietary folate and selenium affect dimethylhydrazine-induced aberrant crypt formation, global DNA methylation and one-carbon metabolism in rats. J Nutr. 2003;133:2907–14.

    PubMed  CAS  Google Scholar 

  114. Vanderpas J, Contempré B, Duale NL, et al. Iodine and selenium deficiency associated with cretinism in northern Zaire. Am J Clin Nutr. 1990;52:1087–93.

    PubMed  CAS  Google Scholar 

  115. Vanderpas J, Contempré B, Duale NL, et al. Selenium deficiency mitigates hypothyroxinemia in iodine-deficient subjects. Am J Clin Nutr. 1993;57(S2):S271–5.

    Google Scholar 

  116. Ruz M, Codoceo J, Galgani J, et al. Single and multiple selenium-zinc-iodine deficiencies affect rat thyroid metabolism and ultrastructure. J Nutr. 1998;129(1):174–80.

    Google Scholar 

  117. Brown AS, Begg MD, Gravenstein S, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry. 2004;61(8):774–80.

    Article  PubMed  Google Scholar 

  118. Brown AS, Begg MD, Gravenstein S, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Obstet Gynecol Surv. 2005;60(2):77–8.

    Article  Google Scholar 

  119. Mortensen P, Nørgaard-Pedersen B, Waltoft BL, et al. Early infections of Toxoplasma gondii and the later development of schizophrenia. Schizophr Bull. 2007;33(3):741–4.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Sørensen H, Mortensen EL, Reinisch JM, et al. Association between prenatal exposure to bacterial infection and risk of schizophrenia. Schizophr Bull. 2009;35(3):631–7.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Meyer U, Feldon J, Yee BK. A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull. 2008. doi:10.1093/Schbul/sbno22.epub.

    Google Scholar 

  122. Wellinghausen N. Immunobiology of gestational zinc deficiency. Br J Nutr. 2001;85(S2):S81–6.

    Article  PubMed  CAS  Google Scholar 

  123. Caulfield L, Zavaleta N, Shankar AH, et al. Potential contribution of maternal zinc supplementation during pregnancy to maternal and child survival. Am J Clin Nutr. 1998;68:499S–508.

    PubMed  CAS  Google Scholar 

  124. Beck M, Nelson HK, Shi Q, et al. Selenium deficiency increases the pathology of an influenza virus infection. FASEB J. 2001;15:1481–3.

    PubMed  CAS  Google Scholar 

  125. Food Standards Agency (2003). Report N05012: Functional markers of selenium in man. http://www.foodstandards.gov.uk/science/research/researchinfo/nutritionresearch/optimalnutrition/n05programme/n05listbio/n05012/. Accessed 19 Oct 2008.

  126. Broome C, McArdle F, Kyle JA, et al. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr. 2004;80:154–62.

    PubMed  CAS  Google Scholar 

  127. Brown K. Effect of infections on plasma zinc concentration and implications for zinc status assessment in low-income countries. Am J Clin Nutr. 1998;S68:S425–9.

    Google Scholar 

  128. Tomkins A. Assessing micronutrient status in the presence of inflammation. J Nutr. 2003;133:S1649–55.

    Google Scholar 

  129. Duggan C, MacLeod WB, Krebs NF, et al. Plasma zinc concentrations are depressed during the acute phase response in children with falciparum malaria. J Nutr. 2005;135:802–7.

    PubMed  CAS  Google Scholar 

  130. Magnus P, Irgens LM, Haug K, et al. Cohort profile: the Norwegian mother and child study. Int J Epidemiol. 2006;35(5):1145–50.

    Article  Google Scholar 

  131. Branum A, Collman GW, Correa A, et al. The National Children’s study of environmental effects on child development. Environ Health Perspect. 2003;111(4):642–6.

    PubMed  PubMed Central  Google Scholar 

  132. Couzin Frankel J. Science gold mine, ethics minefield. Science. 2009;234:166–8.

    Article  Google Scholar 

  133. Susser E, St. Clair D, He L. Latent effects of prenatal malnutrition on adult health: the example of schizophrenia. In: Kaler SG, Rennert OM, editors. Reducing the impact of poverty on health and human development: scientific approaches. Boston: Blackwell Publishing on behalf of the New York Academy of Sciences; 2008. p. 185–92.

    Google Scholar 

Download references

Acknowledgements

This chapter is an updated and expanded version of a previous article [133] The authors thank Kim Fader for her help and the Robert Wood Johnson Health & Society Scholars Program for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David St. Clair M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

St. Clair, D., Susser, E. (2015). Linking Prenatal Nutrition to Adult Mental Health. In: Bendich, A., Deckelbaum, R. (eds) Preventive Nutrition. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-22431-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22431-2_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22430-5

  • Online ISBN: 978-3-319-22431-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics