Skip to main content

B Vitamins Influence Vascular Cognitive Impairment

  • Chapter
Preventive Nutrition

Abstract

As the number of elderly continues to increase worldwide, age-related neurological disorders, such as Alzheimer’s disease and vascular dementia, are a growing concern. In some cases, vascular dementia and cognitive decline in aging are associated with nutritional status and elevated homocysteine, suggesting that improving nutritional status can play a meaningful role in the prevention of cognitive impairment. The research described in this chapter represents current understanding on the relationships of folate and vitamin B12 nutritional status with cognitive function and dementia in adults and elderly. Low B vitamin status is associated with increased homocysteine levels and there is evidence that insufficient B vitamin intake is associated with lower cognitive scores in comparison to adequate intake. However, higher rates of cognitive decline have been reported with high levels of folate and folic acid intake in adults, and memory performance may be impaired with high folate intake in individuals with low vitamin B12 status. Overall, studies reported lower folate blood levels and a higher prevalence of deficiency among subjects with dementia. In general, vitamin B12 serum levels were lower in patients with dementia relative to nondemented individuals; however, this relationship was not as consistent as that for folate. Subsequent to mandatory folic acid fortification, stroke mortality has decreased at a greater rate in the USA and Canada, suggesting a positive effect of fortification on cerebrovascular health. Interventions with folic acid and with combinations of B vitamins were able to improve cognitive function or prevent decline, especially in subjects with low nutrient status. As with the data for blood nutrient levels, evidence that vitamin B12 treatment improves cognitive function is conflicting and less positive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selhub J, et al. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA. 1993;270(22):2693–8.

    Article  PubMed  CAS  Google Scholar 

  2. Rosenberg IH, Miller JW. Nutritional factors in physical and cognitive functions of elderly people. Am J Clin Nutr. 1992;55(6 Suppl):1237S–43.

    PubMed  CAS  Google Scholar 

  3. Smith AD. The worldwide challenge of the dementias: a role for B vitamins and homocysteine? Food Nutr Bull. 2008;29(2 Suppl):S143–72.

    Article  PubMed  Google Scholar 

  4. Gorelick PB, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42(9):2672–713.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huang CW, et al. Impact of homocysteine on cortical perfusion and cognitive decline in mild Alzheimer’s dementia. Eur J Neurol. 2013;20(8):1191–7.

    Article  PubMed  Google Scholar 

  6. Muller M, et al. Brain atrophy and cognition: interaction with cerebrovascular pathology? Neurobiol Aging. 2011;32(5):885–93.

    Article  PubMed  Google Scholar 

  7. Ukraintseva S, et al. Increasing rates of dementia at time of declining mortality from stroke. Stroke. 2006;37(5):1155–9.

    Article  PubMed  Google Scholar 

  8. Geerlings MI, et al. Association of white matter lesions and lacunar infarcts with executive functioning: the SMART-MR study. Am J Epidemiol. 2009;170(9):1147–55.

    Article  PubMed  Google Scholar 

  9. Vermeer SE, et al. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med. 2003;348(13):1215–22.

    Article  PubMed  Google Scholar 

  10. Stavitsky K, et al. White matter hyperintensity and cognitive functioning in the racial and ethnic minority cohort of the Framingham Heart Study. Neuroepidemiology. 2010;35(2):117–22.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bostom AG, et al. Nonfasting plasma total homocysteine levels and all-cause and cardiovascular disease mortality in elderly Framingham men and women. Arch Intern Med. 1999;159(10):1077–80.

    Article  PubMed  CAS  Google Scholar 

  12. Yoo JH, Chung CS, Kang SS. Relation of plasma homocyst(e)ine to cerebral infarction and cerebral atherosclerosis. Stroke. 1998;29(12):2478–83.

    Article  PubMed  CAS  Google Scholar 

  13. Seshadri S, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346(7):476–83.

    Article  PubMed  CAS  Google Scholar 

  14. Selhub J, et al. B vitamins, homocysteine, and neurocognitive function in the elderly. Am J Clin Nutr. 2000;71(2):614S–20.

    PubMed  CAS  Google Scholar 

  15. Tucker KL, et al. High homocysteine and low B vitamins predict cognitive decline in aging men: the Veterans Affairs Normative Aging Study. Am J Clin Nutr. 2005;82(3):627–35.

    PubMed  CAS  Google Scholar 

  16. Scott TM, et al. Plasma homocysteine predicts executive dysfunction and MRI findings of cerebrovascular pathology: the Nutrition, Aging, and Memory in the Elderly (NAME) study. In: The 8th International Conference on Homocysteine Metabolism, Lisbon; 2011.

    Google Scholar 

  17. Fassbender K, et al. Homocysteine in cerebral macroangiography and microangiopathy. Lancet. 1999;353(9164):1586–7.

    Article  PubMed  CAS  Google Scholar 

  18. Hassan A, et al. Homocysteine is a risk factor for cerebral small vessel disease, acting via endothelial dysfunction. Brain. 2004;127(Pt 1):212–9.

    Article  PubMed  Google Scholar 

  19. Kloppenborg RP, et al. Homocysteine and progression of generalized small-vessel disease: the SMART-MR study. Neurology. 2014;82(9):777–83.

    Article  PubMed  CAS  Google Scholar 

  20. Lindgren A, et al. Plasma homocysteine in the acute and convalescent phases after stroke. Stroke. 1995;26(5):795–800.

    Article  PubMed  CAS  Google Scholar 

  21. Wall RT, et al. Homocysteine-induced endothelial cell injury in vitro: a model for the study of vascular injury. Thromb Res. 1980;18(1–2):113–21.

    Article  PubMed  CAS  Google Scholar 

  22. Pavlovic AM, et al. Increased total homocysteine level is associated with clinical status and severity of white matter changes in symptomatic patients with subcortical small vessel disease. Clin Neurol Neurosurg. 2011;113(9):711–5.

    Article  PubMed  CAS  Google Scholar 

  23. Selhub J. Homocysteine metabolism. Annu Rev Nutr. 1999;19:217–46.

    Article  PubMed  CAS  Google Scholar 

  24. Troen A, Rosenberg I. Homocysteine and cognitive function. Semin Vasc Med. 2005;5(2):209–14.

    Article  PubMed  Google Scholar 

  25. Morris MS, et al. Serum total homocysteine concentration is related to self-reported heart attack or stroke history among men and women in the NHANES III. J Nutr. 2000;130(12):3073–6.

    PubMed  CAS  Google Scholar 

  26. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002;325(7374):1202.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Selhub J, Miller JW. The pathogenesis of homocysteinemia: interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am J Clin Nutr. 1992;55(1):131–8.

    PubMed  CAS  Google Scholar 

  28. van Asselt DZ, et al. Cobalamin supplementation improves cognitive and cerebral function in older, cobalamin-deficient persons. J Gerontol A Biol Sci Med Sci. 2001;56(12):M775–9.

    Article  PubMed  Google Scholar 

  29. Joosten E, et al. Metabolic evidence that deficiencies of vitamin B-12 (cobalamin), folate, and vitamin B-6 occur commonly in elderly people. Am J Clin Nutr. 1993;58(4):468–76.

    PubMed  CAS  Google Scholar 

  30. Lindenbaum J, et al. Prevalence of cobalamin deficiency in the Framingham elderly population. Am J Clin Nutr. 1994;60(1):2–11.

    PubMed  CAS  Google Scholar 

  31. Bell IR, et al. Vitamin B12 and folate status in acute geropsychiatric inpatients: affective and cognitive characteristics of a vitamin nondeficient population. Biol Psychiatry. 1990;27(2):125–37.

    Article  PubMed  CAS  Google Scholar 

  32. Riggs KM, et al. Relations of vitamin B-12, vitamin B-6, folate, and homocysteine to cognitive performance in the Normative Aging Study. Am J Clin Nutr. 1996;63(3):306–14.

    PubMed  CAS  Google Scholar 

  33. Tucker KL, Riggs KM, Siro AL. Nutrient intake is associated with cognitive function: the Normative Aging Study. Gerontologist. 1999;39:149.

    Google Scholar 

  34. Bottiglieri T, et al. Homocysteine, folate, methylation, and monoamine metabolism in depression. J Neurol Neurosurg Psychiatry. 2000;69(2):228–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Alpert M, Silva RR, Pouget ER. Prediction of treatment response in geriatric depression from baseline folate level: interaction with an SSRI or a tricyclic antidepressant. J Clin Psychopharmacol. 2003;23(3):309–13.

    PubMed  CAS  Google Scholar 

  36. Goodwin JS, Goodwin JM, Garry PJ. Association between nutritional status and cognitive functioning in a healthy elderly population. JAMA. 1983;249(21):2917–21.

    Article  PubMed  CAS  Google Scholar 

  37. Deijen JB, et al. Nutritional intake and daily functioning of psychogeriatric nursing home residents. J Nutr Health Aging. 2003;7(4):242–6.

    PubMed  CAS  Google Scholar 

  38. Mizrahi EH, et al. Plasma total homocysteine levels, dietary vitamin B6 and folate intake in AD and healthy aging. J Nutr Health Aging. 2003;7(3):160–5.

    PubMed  CAS  Google Scholar 

  39. Morris MS, et al. Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. Am J Clin Nutr. 2007;85(1):193–200.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Clarke R, et al. Low vitamin B-12 status and risk of cognitive decline in older adults. Am J Clin Nutr. 2007;86(5):1384–91.

    PubMed  CAS  Google Scholar 

  41. Haan MN, et al. Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging. Am J Clin Nutr. 2007;85(2):511–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Kado DM, et al. Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur Studies of Successful Aging. Am J Med. 2005;118(2):161–7.

    Article  PubMed  CAS  Google Scholar 

  43. Quadri P, et al. Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am J Clin Nutr. 2004;80(1):114–22.

    PubMed  CAS  Google Scholar 

  44. Ikeda T, et al. Vitamin B12 levels in serum and cerebrospinal fluid of people with Alzheimer’s disease. Acta Psychiatr Scand. 1990;82(4):327–9.

    Article  PubMed  CAS  Google Scholar 

  45. Karnaze DS, Carmel R. Low serum cobalamin levels in primary degenerative dementia. Do some patients harbor atypical cobalamin deficiency states? Arch Intern Med. 1987;147(3):429–31.

    Article  PubMed  CAS  Google Scholar 

  46. Snowdon DA, et al. Serum folate and the severity of atrophy of the neocortex in Alzheimer disease: findings from the Nun study. Am J Clin Nutr. 2000;71(4):993–8.

    PubMed  CAS  Google Scholar 

  47. Joosten E, et al. Is metabolic evidence for vitamin B-12 and folate deficiency more frequent in elderly patients with Alzheimer’s disease? J Gerontol A Biol Sci Med Sci. 1997;52(2):M76–9.

    Article  PubMed  CAS  Google Scholar 

  48. Clarke R, et al. Variability and determinants of total homocysteine concentrations in plasma in an elderly population. Clin Chem. 1998;44(1):102–7.

    PubMed  CAS  Google Scholar 

  49. Clarke R, et al. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol. 1998;55(11):1449–55.

    Article  PubMed  CAS  Google Scholar 

  50. Ellinson M, Thomas J, Patterson A. A critical evaluation of the relationship between serum vitamin B, folate and total homocysteine with cognitive impairment in the elderly. J Hum Nutr Diet. 2004;17(4):371–83. quiz 385–7.

    Article  PubMed  CAS  Google Scholar 

  51. Ravaglia G, et al. Homocysteine and cognitive function in healthy elderly community dwellers in Italy. Am J Clin Nutr. 2003;77(3):668–73.

    PubMed  CAS  Google Scholar 

  52. Raman G, et al. Heterogeneity and lack of good quality studies limit association between folate, vitamins B-6 and B-12, and cognitive function. J Nutr. 2007;137(7):1789–94.

    PubMed  CAS  Google Scholar 

  53. Miller JW, et al. Homocysteine and cognitive function in the Sacramento Area Latino Study on Aging. Am J Clin Nutr. 2003;78(3):441–7.

    PubMed  CAS  Google Scholar 

  54. Teunissen CE, et al. Homocysteine: a marker for cognitive performance? A longitudinal follow-up study. J Nutr Health Aging. 2003;7(3):153–9.

    PubMed  CAS  Google Scholar 

  55. Morris MS, et al. Hyperhomocysteinemia associated with poor recall in the third National Health and Nutrition Examination Survey. Am J Clin Nutr. 2001;73(5):927–33.

    PubMed  CAS  Google Scholar 

  56. Choumenkovitch SF, et al. Folic acid fortification increases red blood cell folate concentrations in the Framingham study. J Nutr. 2001;131(12):3277–80.

    PubMed  CAS  Google Scholar 

  57. Jacques PF, et al. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med. 1999;340(19):1449–54.

    Article  PubMed  CAS  Google Scholar 

  58. Ganji V, Kafai MR. Trends in serum folate, RBC folate, and circulating total homocysteine concentrations in the United States: analysis of data from National Health and Nutrition Examination Surveys, 1988–1994, 1999–2000, and 2001–2002. J Nutr. 2006;136(1):153–8.

    PubMed  CAS  Google Scholar 

  59. Yang Q, et al. Improvement in stroke mortality in Canada and the United States, 1990 to 2002. Circulation. 2006;113(10):1335–43.

    Article  PubMed  Google Scholar 

  60. Balk EM, et al. Vitamin B6, B12, and folic acid supplementation and cognitive function: a systematic review of randomized trials. Arch Intern Med. 2007;167(1):21–30.

    Article  PubMed  CAS  Google Scholar 

  61. Aisen PS, et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA. 2008;300(15):1774–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Sommer BR, Hoff AL, Costa M. Folic acid supplementation in dementia: a preliminary report. J Geriatr Psychiatry Neurol. 2003;16(3):156–9.

    Article  PubMed  Google Scholar 

  63. Hvas AM, et al. No effect of vitamin B-12 treatment on cognitive function and depression: a randomized placebo controlled study. J Affect Disord. 2004;81(3):269–73.

    Article  PubMed  CAS  Google Scholar 

  64. Eussen SJ, et al. Effect of oral vitamin B-12 with or without folic acid on cognitive function in older people with mild vitamin B-12 deficiency: a randomized, placebo-controlled trial. Am J Clin Nutr. 2006;84(2):361–70.

    PubMed  CAS  Google Scholar 

  65. Durga J, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet. 2007;369(9557):208–16.

    Article  PubMed  CAS  Google Scholar 

  66. Smith AD, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9), e12244.

    Article  PubMed  PubMed Central  Google Scholar 

  67. de Jager CA, et al. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry. 2012;27(6):592–600.

    Article  PubMed  Google Scholar 

  68. Bryan J, Calvaresi E, Hughes D. Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr. 2002;132(6):1345–56.

    PubMed  CAS  Google Scholar 

  69. Kang JH, et al. A trial of B vitamins and cognitive function among women at high risk of cardiovascular disease. Am J Clin Nutr. 2008;88(6):1602–10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Fioravanti M, et al. Low folate levels in the cognitive decline of elderly patients and the efficacy of folate as a treatment for improving memory deficits. Arch Gerontol Geriatr. 1998;26(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  71. Nilsson K, Gustafson L, Hultberg B. Improvement of cognitive functions after cobalamin/folate supplementation in elderly patients with dementia and elevated plasma homocysteine. Int J Geriatr Psychiatry. 2001;16(6):609–14.

    Article  PubMed  CAS  Google Scholar 

  72. Douaud G, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci U S A. 2013;110(23):9523–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irwin H. Rosenberg M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scott, T.M., D’Anci, K.E., Rosenberg, I.H. (2015). B Vitamins Influence Vascular Cognitive Impairment. In: Bendich, A., Deckelbaum, R. (eds) Preventive Nutrition. Nutrition and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-22431-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22431-2_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22430-5

  • Online ISBN: 978-3-319-22431-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics